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Time integration issues



Time integration methods

Want to numerically integrate an ordinary differential equation (ODE)

y = f(y)

Note: y can be a vector

Example: Simple pendulum

A /
4 — —— Sl &¥

[

Yo = Y1 =«

- - U1
- Yf(y)(_g Sil’lyo)

l

A numerical approximation to the ODE is a set of values {YOa Yi1,Y2,-. }

attimes {{g,%1,%o2,...}

There are many different ways for obtaining this.



Explicit Euler method
Ynt+1 = Yn + f(yn)At

Simplest of all

Right hand-side depends only on things already non, explicit method

The error in a single step is O(At2), but for the N steps needed for a finite
time interval, the total error scales as O(At) !

Never use this method, it's only first order accurate.

Implicit Euler method

Unt+1l = Yn T f(ynJrl)At

* Excellent stability properties
* Suitable for very stiff ODE

« Requires implicit solver for y,,,



Implicit mid-point rule

yn Jr ynJrl) At

ynJrlynJVf( 9

« 2" order accurate
* Time-symmetric, in fact symplectic

* But still implicit...

Runge-Kutta methods

whole class of integration methods 4" order accurate.
2" order accurate ki = f(Yn,tn)
L ko = [y, +k1AL/2,t, + At/2)
t= ) \ by = f(yn + kA2, 1, + ALJ2)
ky = f(yn +]fl 2 ke = flyn + ksAt/2, 1, + Ab)
_ 1T R ki ke ks kK




The Leapfrog For a second order ODE: X — f (X)

“Drift-Kick-Drift” version “Kick-Drift-Kick” version
At At
- U 1 = U L) —
J"H—I—% — mn+®n? n+ts5 n+f( n) 9
At
Untl = Unt f(anr%)At Tpnt1 — Tp+ KESEDY
B Al At
Tl = Tpylt Uty ] v = U1 b f(33n+1)7

« 2"9 order accurate
* symplectic

e can be rewritten into time-centred formulation
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When compared with an integrator of the same

order, the leapfrog is highly superior
INTEGRATING THE KEPLER PROBLEM
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Even for rather large timesteps, the leapfrog maintains

qualitatively correct behaviour without long-term secular trends

INTEGRATING THE KEPLER PROBLEM
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What is the underlying mathematical reason for the very good
long-term behaviour of the leapfrog ?
HAMILTONIAN SYSTEMS AND SYMPLECTIC INTEGRATION

2
p; 1
H(Ppy-- s Py Xty ey Xn) = D — + §Zmimj¢(X¢—Xj)

If the integration scheme introduces non-Hamiltonian perturbations, a completely different long-term
behaviour results.

The Hamiltonian structure of the system can be preserved in the integration if each step is
formulated as a canoncial transformation. Such integration schemes are called symplectic.

Hamilton's equations

dXi

Poisson bracket

0A OB 0A OB = {x;, H}
A B} = — dt
t4.Bj ; (axi op;, Opi 3Xz')
dp; |
dt _ {pz: H}
Hamilton operator System state vector
Hf ={f H} 1) = |x1(1), ..., %, (1), P1(1),...,Pn(t), 1)
Time evolution operator
t+ At
|t1> — U(tl, tO) |t0> U(t + At,t) = exp (‘/t Hdt)

The time evolution of the system is a continuous canonical transformation generated by the Hamiltonian.



Symplectic integration schemes can be generated by applying
the idea of operating splitting to the Hamiltonian

THE LEAPFROG AS A SYMPLECTIC INTEGRATOR

Separable Hamiltonian
H = Hyin + Hpot

Drift- and Kick-Operators
t+At . :
D(At) = exXp (/ dt Hkin) = { EZ b
t i

11

K(At) / Man N
= eXp t = B) Iy

¢ pe Pi — Di— 2;mymy %‘;‘;’)At
The drift and kick operators are symplectic transformations of phase-space !

The Leapfrog
3 At At
Drift-Kick-Drift: U(At) =D (7) K(At)D (7)
Kick-Drift-Kick:  U(At) = K (% ) D(AH) K (%)

Hamiltonian of the 77 _ 7 1 . oo At?
T rr err —
1

! 3
numerical system: 12 {{Hkina Hyor} s Hign + §Hpot} + O(A??)



When an adaptive timestep is used, much

of the symplectic advantage is lost
INTEGRATING THE KEPLER PROBLEM
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For periodic motion with adaptive timesteps, the DKD leapfrog shows
more time-asymmetry than the KDK variant

LEAPFROG WITH ADAPTIVE TIMESTEP

forwards backwards
P VAN A
DKD I T I | I
force force force force
| asymmetry
forwards backwards
KDK I—i i
force force force

asymmetry
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Symmetric behaviour can be
obtained by using an implicit
timestep criterion that depends on

the end of the timestep 1
INTEGRATING THE KEPLER PROBLEM
0
.
0 2
Quinn et al. (1997)

* Force evaluations have to be thrown away in this
scheme

* reversibility is only approximatively given

* Requires back-wards drift of system - difficult to
combine with SPH
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Pseudo-symmetric behaviour can
be obtained by making the
evolution of the expectation value
of the numerical Hamiltonian time
reversible

INTEGRATING THE KEPLER PROBLEM

KDK scheme
At
A force force
p (change step) = 1 — At./At

Gives the best result at a given number of
force evaluations.
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Collisionless dynamics in an expanding universe is described by a
Hamiltonian system
THE HAMILTONIAN IN COMOVING COORDINATES

Conjugate momentum P = CLQJ:C

Pi
H(plv"'apnaxla'--axn?t)=ZW+§ (I(t)

Drift- and Kick operators

D(t + At,t) = exp (/;+At dt Hkiﬂ) = { E: : Eﬁ + By (At g
K(t+At, t) = exp (ftt+At dt Hpot) = { : : 2 -, mimj%;::j) ftt—l—At %t
Choice of timestep
For linear growth, fixed step in log(a) timestep is then a constant At — Aloga

appears most appropriate... fraction of the Hubble time H(a)



The force-split can be used to construct a symplectic integrator where
long- and short-range forces are treated independently

TIME INTEGRATION FOR LONG AND SHORT-RANGE FORCES

Separate the potential into a long-range and a short-range part:

H = Z

a(t) *3 r a(t)

sz . Z mim; Qs (x; —%x;) 1 Z m;m; o (X; — X;)

The short-range force can then be evolved in a symplectic way on a
smaller timestep than the long range force:

00 =K (5) [ () 2 (5) 5 ()] 0 (5)

long-range long-range
: force-kick force-kick
drift |
At

! RN, !

short-range short-range short-range short-range short-range short-range short-range
force-kick force-kick force-kick force-kick force-kick force-kick force-kick



Issues of floating point
accuracy



A space-filling Peano-Hilbert curve is used in GADGET-2 for a novel
domain-decomposition concept

HIERARCHICAL TREE ALGORITHMS

Fiducial global quad tree
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Peano-Hilbert curve T —_
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The FLTROUNDOFFREDUCTION option can make simulation results binary
invariant when the number of processors is changed

INTRICACIES OF FLOATING POINT ARITHMETIC

On a computer, real numbers are approximated by floating point numbers

Bit

31 24j23 1615 8|7 0
a 32 bit float S|E[E|E|[E|E|E[E|E NN {NA A AARA A (W] PN (P [P PA (A [IA AT AL IA [ AA 1 | A
Exponent Mantisse
Vorzeichen
v= (-1 (I mgmym,...) 270 7°

Mathematical operations regularly lead out of the space of these numbers.
This results in round-off errors.

One result of this is that the law of associativity for simple additions doesn't
hold on a computer.

A+(B+C) # (A+B)+C



As a result of parallelization, partial forces may be computed by several
Processors

THE FORCE SUM IN THE TREE ALGORITHM

The tree-walk results in typically several hundred partial forces

Partial force
Situation 1:
000000 000000 00000000¢
cpu 0 ij 1 cpu 2
A B C
Situation 1:

000000000000 000000OOO

cplu 0 cpi 1
A' B'

When the domain decomposition is changed, round-off differences are introduced
into the results

A+B+C #* A +PB’



Using double-double precision, the round off difference can be eliminated
THE FORCE SUM USING DOUBLE-DOUBLE PRECISION

The tree-walk computes several hundred partial forces, which are all double precision values. The set of numbers is
identical when the domain decomposition or number of processors is changes.

000000 000000 000000000

cp¢u 0 cpiJ 1 cp¢u 2
A B C

Each CPU now computes the sum in quad precision (128 bit, with 96 bit mantisse, “double-double”)

Then the result is added, obtaining a quad precision result, with a typical round-off error of a few times 10-34. As
before, this round-off may change when the number of CPUs is changed.

However, now we reduce the precision of the result to double-precision, i.e. we round to the nearest
representable double-precision floating point number.

Since the mean relative spacing of such numbers is 10-17, much larger than the double-double round off, we always
round to the same number. (Except in one out of 107 cases, which is very very rare.)

For the final result we then have
A+B+C = A'+B'



Substructure
IN sSimulations



Once sufficiently high force- and mass resolution is used, the
“overmerging” problem of dark matter halos can be overcome

THE APPEARENCE OF SUBHALOS IN HIGH-RESOLUTION SIMULATIONS

-1 -0.5 0 0.5 1

Ghigna et al. (1998)

Klypin et al. (1999), Moore et al. (1999)


file:///home/volker/MIT_2005/talk_MIT.sxi/play_cluster.sh
file:///home/volker/MIT_2005/talk_MIT.sxi/play_cluster2.sh

Simulated dark
matter halos
are not
spherically
symmetric, nor
does their
structure look
as simple as
assumed in the
analytic models
models

DARK MATTER

DISTRIBUTION IN A
HIGH-RESOLUTION
"MILKY WAY" HALO



file:///home/volker/Talks/Heidelberg_2006/play_halo.sh
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power-law

THE NFW-PROFILE

p(r) f pcrll

T S In(1+¢) - 1+

o Perit

10° | |||||||| | |||||||| | |||||||| |

0.1 1.0 10.0 100.0
ro| h'lkpc 1




Halos formed in
high-resolution
simulations of
cold dark matter
show rich
substructure

SUBHALOS IN A RICH
CLUSTER

~ 20 million
particles within
virial radius of
cluster

Springel, White,
Kauffmann,
Tormen (1999)

-



Even in the
central regions,
substructures
can still be found

SUBHALOS AROUND A
CLUSTER CENTRE

~ 20 million
particles within
virial radius of
cluster

Springel, White,
Kauffmann,
Tormen (1999)

100 kpc /+h

e



Early on, the similarity of the substructure population of halos of
widely different mass has been pointed out

SUBHALOS IN A RICH CLUSTER AND A MILKY WAY-SIZED HALO

Halo with 5x104 M

Moore et al. (1999)
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Simulated cluster

_____ Simulated galaxy
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Detecting
Substructure:
SUBFIND



Different methods are in use to find substructures, but few checks of
their systematic differences have been carried out
SUBSTRUCTURE DETECTION ALGORITHMS

SKID (Stadel 1998) Particles are moved along a local density gradient, and
then grouped by FOF, followed by gravitational unbinding.
(derived from DENMAX, Gelb & Bertschinger 1994)

HFOF (Gottloeber et al. 1999) Plain FOF is applied with a hierarchy of linking lengths

BDM (Klypin et al. 1999) Local maxima in the density are identified (there are
different possibilities for this), and then the bound set of
particles in spherical apertures is determined

HOP (Eisenstein & Hut 1998) A local density estimate is computed, and then particles
are attached to their nearest neighbours. A set of rules
connects and prunes the isolated groups.

SUBFIND (Springel et al. 2001) Based on local density estimates, topological criteria are
used to find isolated overdense regions which are then
subjected to a gravitational unbinding procedure

MHF (Gill, Knebe & Gibson 2004) An adaptive grid is used to locate density maxima. Around
each maximum, a spherical aperture is grown until an upturn
in the spherical density profile is detected. This is followed by
gravitational unbinding and removal of subhalo duplicates.



Subhalo finding (SUBFIND)

Finding dark matter - NN
satellites in simulations

IS a non-trivial task

AN ALGORITHMIC R

TECHNIQUE FOR SUBHALO X

IDENTIFICATION

SUBFIND

/\/ 7 /N l

(1) Estimate local DM density \/\ > /\Js chalo

field X > x

(2) Find locally overdense
regions with topological p
method A Saddle point

/ Threshold
Sul:nhuln:n
candidates

(3) Subject each substructure
candidate to a gravitational
unbinding procedure




The subhalos formed
In high-resolution
simulations of cold
dark matter can be
reliably detected and
extracted

SUBHALOS IN THE S2
CLUSTER IDENTIFIED WITH
SUBFIND

LK kpe ]




Abundance of
substructure



The mass-function of subhalos contained in a halo is a power-law
which is dominated by the massive end

SUBHALO ABUNDANCE

dN

— XM

dm

1.8

authors appear to agree that

—1.7<a—1.9
cluster #subhalos
S1 118
S2 495
S3 1848
S4 4667

(Springel et al.

2001)

dN/ dm

Differential mass-spectrum of subhalos
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dN / dm

The mass-function of subhalos in halos of widely differing mass
shows very similar behaviour

SUBHALO ABUNDANCE IN A RICH CLUSTER AND A MILKY WAY SIZED HALO

convergence study in rich cluster convergence study in Milky Way sized halo
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(Springel et al. 2001) (Gao et al. 2004)



Using the “zoom” technique, a set of high-resolution halos on different
mass scales has been computed

THE SIMULATION SET OF GAO ET AL. (2004)

GAQ GAl GA2 GA3

T e c=skooh s (3323 637966 5953033 53504205
| o mp[hMg] 1.8 x 105 1.9x 107 2.0x 10° 2.5 x 10°
@ A series of very high resolution e[h~"kpc] 1.8 1.0 0.48 0.24

simulation of a MW-sized halo
(GAO-GA3)

# , e
s ¥ o 3 g ol e
- : s ‘ “
¥ e

" yP.arent Iargeiécalé Resimulation with spatially
structure simulation varying resolution

Internal structure c.)f.ind?vidual o‘ojec.ts '.C'an be
stydied with very high resolution




The convergence in the velocity function suggests that we
robustly measure the number of more massive subhalos

SUBHALO VELOCITY FUNCTION
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More massive halos show a slightly higher subhalo abundance
SUBHALO ABUNDANCE FOR SYSTEMS OF DIFFERENT MASS

differential cumulative
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normalized subhalo mass (Gao et al. 2004) normalized subhalo mass

—» Due to their later formation time, more massive halos retain more substructure.

The scale-invariance of the subhalo populations of halos of different mass is broken.



The subhalo abundance per unit halo mass appears to be universal
SUBHALO ABUNDANCE FOR SYSTEMS OF DIFFERENT MASS
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(a factor 2 for 3 decades in mass)
Explains trend with

parent mass in: d(Msub/Mparent)



The abundance of subhalos per unit parent mass is surprisingly close
to the cosmological abundance of halos per unit mass in the Universe

SUBHALO ABUNDANCE FOR SYSTEMS OF DIFFERENT MASS

10-1

mEubdn/dmsub

10-2

The number of subhaloes
per unit mass is quite
similar to the number of
small halos per unit mass
in the surrounding universe

Press & Schechter

maub(h_ : M@)
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Subhalo
masses
boosted by
factor 2

Note:

only subhalo
mass above the
local mean
density in halo is
counted by
SUBFIND
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The mass
fraction In
substructure



Slightly conflicting results have been found for the mass fraction in
subhalos
DIFFICULTIES IN DETERMINING THE SUBHALO MASS FRACTION

Ghigna et al. (1998): ~10-15 %

Moore et al. (2001):  May approach unity
Springel et al. (2001): ~10 %

de Lucia et al. (2005): ~6-10 %

Obtaining precise mass fractions is problematic because:

@ slope is just a bit above -2 (below it, mass fraction would diverge)

@ there is large object-to-object variation because the most massive
subhalos dominate the cumulative mass function

@ result may be influenced by subhalo detection scheme



The mass fraction in subhalos
SUBHALO ABUNDANCE FOR SYSTEMS OF DIFFERENT MASS

Z2=0

|, 10%5h~'M_>M<3x101h-1M,

Fraction(m>m_,)
O
o
—

_e 3xh-11014M_>M>104h-1M,
The cumulative fraction
cobhalns are indludot, and - DTH0MMG>M>3x 10/ 1M
lower mass systems _
contain on average a
smaller fraction of mass in Ll L vl Lol |

subhalos. 1010 1011 1012 1018
msub(h_lMG))




The radial
distribution of
subhalos



Subhalos are 1 T T TTT] I [ T T 1
substantially less
concentrated than
the dark matter as
a whole

CUMULATIVE RADIAL
DISTRIBUTION OF

10'8h-1>M>3x 104h-1M

— — -3x10“h-'M_>M>10"h-'M,
— _10%h-'M >M>3x10'%h-1M,
Dark Matter

SUBHALOS FORHALOS & (y ¢ |
OF DIFFERENTMASS O - -
D .
Q -
1o -
-
&‘ —
001 m_, /M, > 0.001__

on the subhalo mass is _
found, and only very weak _
dependence on mass or Lol | | L1 1 111
concentration of parent halo. 0.1 1

No significant dependence 4 e / E




Different subhalo
samples show {
similar radial

concentrations m,,,,/M, > 0.0001

RADIAL DISTRIBUTION OF — — -m,,,/M, > 0.001
SUBHALOSFOR [ eeeee--s

SUBHALOS ABOVE
DIFFERENT SIZE LIMITS

0.1

F'raction

0.01

As the maximum circular
velocity should be more
robustly measured than the
total mass, this suggests that
our mass measurements in the 0 1
inner parts are presumably )

biased low
r/ r200

[—



Tracking
Substructure
over time



Analysis of many simulation .| ////
outputs allows a measurement os2- / % "
of the hierarchical build up of 4. ___

dark matter halos e %W/f//ﬁfﬂ I\

7))
FOLLOWING DARK MATTER IN TIME EEZEW///////t | :Es
o ////% X
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84

Merger tree of a cluster 833

(only progenitors above a 0.885
minimum mass are shown) 94

000

rrr 1111t 1r1r 1T 1T 1T 17T 1T 17T T T T T



Tracking the fate of Merging tree of subhalos
satellite galaxies in
simulations is
computationally and
“logistically' complicated

A SKETCH OF A SUBHALO
MERGING TREE

(Note: we have recently done this for
a simulation with more than 1010
particles, and more than 20 million
halos at a given output time)

Y Time



Mass loss as a
function of time



Accreted substructures quickly loose a substantial fraction of their mass
RETAINED SUBHALO MASS FRACTION OF SURVIVING SUBHALOS

Mean retained mass

Accretion Redshift (z)



Most substructures at the present time have been accreted quite recently
FRACTION OF SUBHALOS WITH ACCRETION REDSHIFT LARGER THAN A GIVEN VALUE

:: — Nub(z)
: Nsub(zzo)E

0.1

F'raction

—10%h-'>M>3x10"h"'M,
Most subhalos are recent additions n
to a halo: only 10% of them were | ..... 3x10“h-'Mg>M>10"h"'M,
accreted earlier than z=1.

L — —10"h-My>M>3x10'3h-1M,
Surviving subhalos are accreted
more recently than typical dark —a—Cluster
matter particles. 001 L Lo Lo vl

0.1 1
Accretion Redshift (z)




Accreted subhalos can be tracked over long times despite their

continuing mass loss
THE FATE OF SUBHALOS ACCRETED AT Z=1

fraction of
_surving subhalos

T 1T [Tt rr[rrrJjrrrJjrrrprri
1 -
ﬂ -
O _
S
8 0.5 —4
. A N
S y 8- 8. A
=y B ~ A 7
. A N_,>100 (f) N 1
| SN
while > 90% of subhalos ~ N >300 (f ) b
are still tracked after OF ® Ysuw n o
accretion, their mass ~ | -
drops by a factor of 2 on R BTSN N BT S RN T B A BN A B A N A B A
average, in part due to
the substructure 1.2 1 0.8 06 04 0.2 0

identification method

Redshift (z)

fraction of mass in
surving subhalos



el I,

The accretion time coincides with the peak %7 S
in the mass accretion history of halos 0.0f 0.5 < Zgeer < 1.7
— w411
MEAN MASS ACCRETION HISTORY OF CLUSTER = | Mo/h halos
SUBHALOS ~ 7027
. Eﬁ
De Lucia et al. (2004) !
2 o6l 1010 M, /h halos
S i \
~0.8F (b)
—1.U: 1 I 1 1 I I
1 2 3 4 5 7 9
1+redshift
0.2 I ! ! ' ! ' 0.2 T T T T T T

Log [ Mprog/Msuh(zu::t) ]
Log [ Mprog/ Mwb( za::r)]

1 2 3 4 5 7 9 -1.0 1 I I I | !
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Streams and
the phase-
space structure
of halos



Satellite debris remains visible for a while as a stream in the phase-
space distribution of halos

EVOLUTION OF PHASE-SPACE DENSITY IN TIDAL DEBRIS

phase space evolution around a reference particle in tidal
debris of an accreted satellite

o0 - - 1 T T T T T T T T T T T 1

10

o(v) {km s™

=

=}
IIIII“Tl T TTTIT
IIIII|,|,|,| LLat

Moore et al. (2001)

Is our Solar neighbourhood g4
dominated by a single stream,
or rather by many thousands?

time (Gyr)

Helmi, White & Springel (2003)



Tracking subhalo accretion in a high-resolution simulation allows an
estimate of the number of streams passing through a volume
NUMBER OF STREAMS PREDICTED FOR THE MILKY WAY AT THE SOLAR CIRCLE

Helmi, White & Springel (2003)

let N, be the count of particles per
stream in some volume

an estimate for the mass-weighted
mean mass per stream, corrected
for Poisson noise is

> 1. (Vi — Ny)
> k1.1 N

i =

We define the mass-weighted
number of streams as the total
mass in the box divided by the
mean mass per stream. This can
the be estimated as:

A 1 N
P Zk_{,L k
M

The Solar neighbourhood
should be clumpy with a few
10° intersecting streams!

mass—weighted # of streams

10°

o
Q

10
o I I | I I I I I I I I =
- : measured in boxes ]
- of 2 kpc on a side ’
4l _
3 = =
2 = —
gt
O 1 1 1 | 1 1 1 I 1 1 1
0.8 1.0 1.2 1.4 1.6 1.8



Radial structure
of satellites



Subhalos are structurally different

from their parent halo, with lower
central densities and wider
circular velocity curves

STRUCTURAL RESPONSE OF SUBHALOS TO
MASS LOSS

'
Hayashi et al. (2003), I;

Stoehr et al. (2003):

@ Stripping reduces the density of a
subhalo at all radii

@ peaks of circular velocity curves
become narrower than parent halo

@ inner structure of subhalos
substantially shallower than NFW

60

40 —

Stoehr et al. (2003)

Circular velocity curves for subhalos in the GA3 simulation
T i T roor T T

10
8
&
0.1 1 10
kpc
Moore et al. (2&lgtural time evolution of an infalling subhalo
1.2 _||||||||||||||||||||||\|_ 8 | T ||

This has implications for: 20.8
. . 0.6

@ direct dark matter detection =
@ correspondence between \00-4
subhalos and observed dwarf "0 2
galaxies in the MW 0

L (| ‘ 111 | [
log p/pbackground
o

:||||||||||||||||||||||\| o T T |
0] 1 2 3 4 < -1 0

r / rpeak.initial ]'Og r / rpeak,initial

)
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Implications of
subhalos for
annihilating dark
matter



Dark matter could be self-annihilating, in which case the presence of
subhalos should boost the expected flux
THE ANNIHILATION SIGNAL DUE TO SUBSTRUCTURES

Stoehr, White, Springel, Tormen, Yoshida (2003)

Main halo
Annihilation flux: o
Expected emission from subhalos
2 E T T TTTTTI I I TTTTIT T T TTTIT T T TTTTTT I T TTTTTT IILLE
N, (o) Pom(X) 3 = | | | R
I = 2 2 d"w 108 & .
2 mpy JVv AT d?(X)
107 & E
| = 108 & -
Expect signal from: & = 5
L - _
5 - —
@ central halo cusp :‘ 10 - =
@ subhalos if their cuspy as well © 104 L ]
~ = 5
8 = .
: _ ¢ 108 =
Estimate relevant density integral from: 2 = =
N200 & 108 L —;
2 A = E
J—/pDMdV—Zpimi - -
V -71 — ]_Ol E- —=
11— E 3
(Particle densities are estimated with 16 ‘ Cgdn ‘ GAZn ‘ GAln ‘ GAOn -
Voronoi tesselation. Corrections for - -
Poisson noise are applied.) 107t =, -
E [ IIIIII| | IIIIII| [ IIIIII| [ IIIIII| [ IIIIII| [ IIEI
107 108 10° 101 101 1012

Mass [Mg]



F/ Fcorrected smooth halo

Substructures boost the annihiliation radiation by only a small amount,
and none of them outshines the Galactic center
DISTRIBUTION OF THE ANNIHILATION SIGNAL BY SOURCE AND BY RADIUS

0.1

Convergence of emission from different sources
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-------------------------- .
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B density fluctuations N
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Cumulative radial distribution of emission
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annihilation signal from subhalos is dominated by the most massive ones, is preferentially in the outer parts,
and is overall less than from the smooth inner halo (unlike Taylor & Silk 2003, Calcaneo-Roldan & Moore 2000)

unlikely that any of the subhalos would outshine the center (Sagittarius is already 24 kpc away)
central emission has an angular scale of several tens of degrees. It may be best observed off-centre, 25-35

degrees away from the Galactic center



Satellite
population In
the Milky Way



dN(>V,, .)/dV (Mpc/h)-3

The "missing satellites" are viewed as a vexing problem for CDM
THE SATELLITE VELOCITY FUNCTION OF CDM COMPARED WITH MILKY WAY SATELLITES

1000

100

—
o

Klypin et al. (1999)

I I I I I 1 I II =
0 o CDM
° — ACDM
A MW/M31
)
3°
: { ] 5
o A
: 0 1.
3 42
- R<200h-'kpc 1
: 1 1 | 1 1 L1 -
10 50 100
V,..(km/s)

Are the most massive subhalos too big?

Cumulative number of halos

1000

T T T T

| B B A

Moore et al. (1999)

L1 1 1111

Simulated cluster

L

Simulated galaxy

E— \‘\_ o Virgo cluster data —E
- dsph's ®,
3 e
.
Fornax ., -
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And what about the large abundance of small ones?



The most massive subhalos in Assumptions:

the simulations can plausible @ spherical symmetry and isotropic velocity
host all the known satellites in dispersion tensor - .
. @ stellar density drops to zero at finite truncation
the Milky Way radius (as observed)
THE PREDICTED CENTRAL VELOCITY @ stellar density of dwarfs modelled with a King
DISPERSION COMPARED WITH MW model
T 2(..2 2\1/2
Z?TEhLleTvii & Springel (2002 op(rp) = Jey dr pVe' (% = 1) 2/
p T
oehr, ite pringel ( ) p fT; dr p,r/(fr,Q _ 7‘12))1/2
The OPse"Yed Iin_e-of-sight Number of subhalos where the predicted central dispersion is larger
velocity dispersions of the MW's than observed
dwarf galaxies need to be T
compared to a stellar model put e [kpc] Tf/TC 90 [T] Ngao
inside the simulated dark matter Sagittarius  0.44 6.8 11,4(19) 11(2)
subhalos, not to the subhalo Forn 0.46 51 10.5 13
circular velocities. orfax . . '
Leo I 0.215 3.8 8.8 4
Sculptor 0.11 13 6.6 4
Leo 11 0.16 3 6.7 1
Sextans 0.335 9.6 6.6 18
Carina 0.21 3.3 6.8 6
Ursa Minor 0.20 3.2 9.3 0
Draco 0.18 5.2 9.5 0

all 11 satellites of the MW can be accomodated in the 20 most
massive subhalos



There is surprisingly good
agreement between the
kinematics of the observed
satellites and the predicted
ones for ACDM subhalos

COMPARISON OF VELOCITY
DISPERSION PROFILES

Note:

* dark matter subgalos are much
more extended than the stellar
edge at the “tidal” radius

* A further reduction of the central
subhalo densities (e.g. by self-
interacting dm) would make it
difficult to explain the observed
satellites

Stoehr, White & Springel (2002)

10

R [arcmin]

20
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Provided reionization sterilizes small halos efficiently, the satellite
population is well matched
THE VELOCITY DISTRIBUTION FUNCTION OF SUBHALOS THAT ORIGINATED IN RARE PEAKS

all subhalos

lum. subhalos at z=0
— — — |lum. subhalos at z=1.1] ;
O dwarf galaxies

Moore et al. (2005)

. 100
Only those surviving [
subhalos which
were already
present at z=12 as

2.50 peaks

N(>Vc)

Vc [km/s]



Some direct hydrodynamical simulations I IF» F»I ]
do not seem to provide a sufficiently : N '
strong suppression of small halos bythe . o015 |------ e L
UV background ol
BARYON FRACTION AND FILTERING MASS \g 0.1 L ]
Hoeft, Yepes, Gottloeber & VS (2005) :E [ X
Linear theory 4 o5 [ th
10 ——— . ' _ filtering mass, : T | .
: / ] Gnedin (1998) [ eugedi
et M(0=0.3) 4 10'° "1 101 HMIH‘I)HI
10° | ]
<
= =
= 10% b
: 1 10° =
s
1o’ , simulation result E*
/ =
= 5 2 1
z+1

need to suppress cooling for V.<35-40 km/sec
(corresponds to 1.5x10'° M, or ~50000 K)
to make small satellite population dark




Using subhalos for
semi-analytic
galaxy formation



Semi-analytic models are one of the most powerful

provided by
- simulations in

techniques to study galaxy formation — —*_ “hybrid” models
/7
MOST IMPORTANT INPUT PHYSICS /| Dark matter \
" Radiative gas Lt lnice) Star formation
& cooling \| history tree
Spectrophotometric
_ _ 'S_ el evolution
Hierarchical growth of dark —
-]
—» understood with high accuracy C evolution enrichment
Radiative cooling of gas within : :
o Semi- analytic
halos (dissipation) hi
—» in princible well within reach of current simu- machninery
lations, yet plagued with numerical difficulties
Star formation and associated T e
feedback processes relation
—» highly uncertain physics, numerically 2
extremely difficult I~ Star formation Galaxy
@) :
= Galaxy history morphologies
Spectrophotometric modeling of = SRIE
stellar populations O
| -
—» some uncertainties, but no/small 0 orphology

coupling to gas dynamics

density
relation

Evolution to
high redshift

Clustering
properties




The N-body resolution can be pushed to a point where essentially
all luminous galaxies have a corresponding dark matter structure

CLUSTER LUMINOSITY FUNCTION AT VARIOUS RESOLUTIONS
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Explicit tracking of subhalos provides a more faithful description
of the merging rates of satellites

CLUSTER LUMINOSITY FUNCTION

Direct tracing of subhalos in the N-

Body simulation

J00.0E ™ 7

100.0 =

10.0 =

0.1

B-band

subhalo-scheme

ejection

52 cluster .
Trentham (1998
L | 1 | 1 |. 1 1 1 J L 1 1

24

20 18 16 -14

Standard semi-analytic estimates

of satellite survival times

000.0F T
" B-band
standard-scheme
100.0 = ejection -
10.01 |
- '
1.0 j / -
- / 52 cluster ]
i Trentham (1998) |
0.1 o b b
-24 -22 -20 -18 -16 -14

My

Springel, White, Tormen & Kauffmann (2000)



Rarely, subhalos may
collide and merge
within a larger halo

A MERGER OF SUBHALOS

This happens rarely, but is
kept track of in the semi-
analytic model

(Only 1 out of 20 subhalos
merge with another subhalo
before they fall into the center.)
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The morphology-density relation arises naturally in hierarchical models

of galaxy formation

MORPHOLOGICAL MIX
AS A FUNCTION OF

CLUSTER-CENTRIC DISTANCE

fraction of population
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file:///home/volker/Berkeley_2004/talk_berkeley_2004.sxi/play_millennium.sh

The semi-analytic
merger-tree in the
Millennium Run
connects about 800
million subhalos
SCHEMATIC MERGER TREE

@ The trees are stored as
self-contained objects,
which are the input to the
semi-analytic code

@ Each tree corresponds to
a FOF halo at z=0 (not
always exactly)

@ The collection of all trees
(a whole forest of them)
describes all the
structures/galaxies in the
simulated universe

Time

<

Merger tree organization in the Millennium Run
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The merger tree in the Millennium simulation describes the orbits of all
galaxies brighter than about 0.1 L,

DARK MATTER AND GALAXY DISTRIBUTION IN A CLUSTER OF GALAXIES
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The semi-analytic model fits a multitude of observational data

CLUSTERING BY MAGNITUDE AND COLOR

S 200 <M,,-5loggh<-19.0
N M,,-5log, h <215

split by luminosity

IIIII]r

split by colour
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The semi-analytic model fits a multitude of observational data
B-V COLOUR DISTRIBUTION

ellipticals
fffff spirals

1.5x10%

> 4 ox104F
1 _

~——

N

5.0x103

Croton et al. (2004) 0.2




