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Time integration issues



Time integration methods

Want to numerically integrate an ordinary differential equation (ODE)Want to numerically integrate an ordinary differential equation (ODE)

Note: y can be a vector

Example: Simple pendulum

A numerical approximation to the ODE is a set of values
at times

There are many different ways for obtaining this.



Explicit Euler method

● Simplest of all

● Right hand-side depends only on things already non, explicit method

● The error in a single step is O(t2), but for the N steps needed for a finite 
time interval, the total error scales as O(t) !

● Never use this method, it's only first order accurate.

Implicit Euler method

● Excellent stability properties

● Suitable for very stiff ODE

● Requires implicit solver for yn+1



Implicit mid-point rule

● 2nd order accurate

● Time-symmetric, in fact symplectic

● But still implicit...

Runge-Kutta methods
 
whole class of integration methods

2nd order accurate

4th order accurate.



The Leapfrog

“Drift-Kick-Drift” version “Kick-Drift-Kick” version

● 2nd order accurate

● symplectic

● can be rewritten into time-centred formulation

For a second order ODE:



The leapfrog is behaving much better 
than one might expect...
 

INTEGRATING THE KEPLER PROBLEM



When compared with an integrator of the same 
order, the leapfrog is highly superior
INTEGRATING THE KEPLER PROBLEM



Even for rather large timesteps, the leapfrog maintains 
qualitatively correct behaviour without long-term secular trends
INTEGRATING THE KEPLER PROBLEM



What is the underlying mathematical reason for the very good 
long-term behaviour of the leapfrog ?
HAMILTONIAN SYSTEMS AND SYMPLECTIC INTEGRATION

The Hamiltonian structure of the system can be preserved in the integration if each step is 
formulated as a canoncial transformation. Such integration schemes are called symplectic.

If the integration scheme introduces non-Hamiltonian perturbations, a completely different long-term 
behaviour results.

Poisson bracket: Hamilton's equations

Hamilton operator System state vector

Time evolution operator

The time evolution of the system is a continuous canonical transformation generated by the Hamiltonian.



Symplectic integration schemes can be generated by applying 
the idea of operating splitting to the Hamiltonian
THE LEAPFROG AS A SYMPLECTIC INTEGRATOR

Drift- and Kick-Operators

Separable Hamiltonian

The Leapfrog

The drift and kick operators are symplectic transformations of phase-space !

Drift-Kick-Drift:

Kick-Drift-Kick:

Hamiltonian of the 
numerical system:



When an adaptive timestep is used, much 
of the symplectic advantage is lost
INTEGRATING THE KEPLER PROBLEM

That's what's 
done in 

GADGET-1

Going to KDK reduces the error by a factor 
4, at the same cost !



For periodic motion with adaptive timesteps, the DKD leapfrog shows 
more time-asymmetry than the KDK variant
LEAPFROG WITH ADAPTIVE TIMESTEP

force forceforce

KDK

forwards backwards

asymmetry

force forceforce

DKD

forwards backwards

asymmetry

force



The key for obtaining better long-
term behaviour is to make the 
choice of timestep time-reversible
INTEGRATING THE KEPLER PROBLEM

force forceforce



Symmetric behaviour can be 
obtained by using an implicit 
timestep criterion that depends on 
the end of the timestep
INTEGRATING THE KEPLER PROBLEM

That's what 
PKDGRAV 

(presumably) uses

● Force evaluations have to be thrown away in this 
scheme

● reversibility is only approximatively given
● Requires back-wards drift of system - difficult to 

combine with SPH 

Quinn et al. (1997)



Pseudo-symmetric behaviour can 
be obtained by making the 
evolution of the expectation value 
of the numerical Hamiltonian time 
reversible
INTEGRATING THE KEPLER PROBLEM

That's what 
GADGET-II

is using

Gives the best result at a given number of 
force evaluations.

forceforce

KDK scheme



Collisionless dynamics in an expanding universe is described by a 
Hamiltonian system
THE HAMILTONIAN IN COMOVING COORDINATES

Conjugate momentum

Drift- and Kick operators

Choice of timestep

For linear growth, fixed step in log(a) 
appears most appropriate...

timestep is then a constant 
fraction of the Hubble time



The force-split can be used to construct a symplectic integrator where 
long- and short-range forces are treated independently
TIME INTEGRATION FOR LONG AND SHORT-RANGE FORCES

Separate the potential into a long-range and a short-range part:

The short-range force can then be evolved in a symplectic way on a 
smaller timestep than the long range force:

short-range 
force-kick

drift

short-range 
force-kick

short-range 
force-kick

short-range 
force-kick

short-range 
force-kick

short-range 
force-kick

short-range 
force-kick

long-range 
force-kick

long-range 
force-kick



Issues of floating point 
accuracy



A space-filling Peano-Hilbert curve is used in GADGET-2 for a novel 
domain-decomposition concept
 

HIERARCHICAL TREE ALGORITHMS



The FLTROUNDOFFREDUCTION option can make simulation results binary 
invariant when the number of processors is changed
 

INTRICACIES OF FLOATING POINT ARITHMETIC

On a computer, real numbers are approximated by floating point numbers 

a 32 bit float

Mathematical operations regularly lead out of the space of these numbers.  
This results in round-off errors.

One result of this is that the law of associativity for simple additions doesn't 
hold on a computer.

A + (B + C)  ≠   (A + B) + C



As a result of parallelization, partial forces may be computed by several 
processors
 

THE FORCE SUM IN THE TREE ALGORITHM

The tree-walk results in typically several hundred partial forces

cpu 0 cpu 1 cpu 2

A B C

Situation 1:

Partial force

cpu 0 cpu 1

A' B'

Situation 1:

A + B + C    ≠    A' + B'

When the domain decomposition is changed, round-off differences are introduced 
into the results



Using double-double precision, the round off difference can be eliminated
 

THE FORCE SUM USING DOUBLE-DOUBLE PRECISION

The tree-walk computes several hundred partial forces, which are all double precision values. The set of numbers is 
identical when the domain decomposition or number of processors is changes.

cpu 0 cpu 1 cpu 2

A B C

A + B + C   =  A' + B'

Each CPU now computes the sum in quad precision (128 bit, with 96 bit mantisse, “double-double”)

Then the result is added, obtaining a quad precision result, with a typical round-off error of a few times 10-34. As 
before, this round-off may change when the number of CPUs is changed.

However, now we reduce the precision of the result to double-precision, i.e. we round to the nearest 
representable double-precision floating point number. 

Since the mean relative spacing of such numbers is 10-17, much larger than the double-double round off, we always 
round to the same number. (Except in one out of 1017 cases, which is very very rare.)

For the final result we then have



Substructure 
in simulations



Ghigna et al. (1998)

Klypin et al. (1999), Moore et al. (1999)

Once sufficiently high force- and mass resolution is used, the 
“overmerging” problem of dark matter halos can be overcome
  

THE APPEARENCE OF SUBHALOS IN HIGH-RESOLUTION SIMULATIONS 

file:///home/volker/MIT_2005/talk_MIT.sxi/play_cluster.sh
file:///home/volker/MIT_2005/talk_MIT.sxi/play_cluster2.sh


Simulated dark 
matter halos 
are not 
spherically 
symmetric, nor 
does their 
structure look 
as simple as 
assumed in the 
analytic models 
models
DARK MATTER 
DISTRIBUTION IN A 
HIGH-RESOLUTION 
"MILKY WAY" HALO

file:///home/volker/Talks/Heidelberg_2006/play_halo.sh


N-body 
simulations find a 
universal profile 
that is not a 
power-law
THE NFW-PROFILE



Springel, White, 
Kauffmann, 
Tormen (1999)

Halos formed in 
high-resolution 
simulations of 
cold dark matter 
show rich 
substructure
  

SUBHALOS IN A RICH 
CLUSTER 

~ 20 million 
particles within 
virial radius of 
cluster



Springel, White, 
Kauffmann, 
Tormen (1999)

Even in the 
central regions, 
substructures 
can still be found
  

SUBHALOS AROUND A 
CLUSTER CENTRE

~ 20 million 
particles within 
virial radius of 
cluster



Moore et al. (1999)

Halo with 2x1012 M
⊙

Early on, the similarity of the substructure population of halos of 
widely different mass has been pointed out
  

SUBHALOS IN A RICH CLUSTER AND A MILKY WAY-SIZED HALO 
Halo with 5x1014 M

⊙

Klypin et al. (1999), Moore et al. (1999): Where are 
all the missing satellites?



Detecting 
Substructure: 
SUBFIND



Different methods are in use to find substructures, but few checks of 
their systematic differences have been carried out
  

SUBSTRUCTURE DETECTION ALGORITHMS

SKID (Stadel 1998)

HFOF (Gottloeber et al. 1999)

HOP (Eisenstein & Hut 1998)

SUBFIND (Springel et al. 2001)

MHF (Gill, Knebe & Gibson 2004)

Particles are moved along a local density gradient, and 
then grouped by FOF, followed by gravitational unbinding. 
(derived from DENMAX, Gelb & Bertschinger 1994)

Plain FOF is applied with a hierarchy of linking lengths

A local density estimate is computed, and then particles 
are attached to their nearest neighbours. A set of rules 
connects and prunes the isolated groups.

Based on local density estimates, topological criteria are 
used to find isolated overdense regions which are then 
subjected to a gravitational unbinding procedure

An adaptive grid is used to locate density maxima. Around 
each maximum, a spherical aperture is grown until an upturn 
in the spherical density profile is detected. This is followed by 
gravitational unbinding and removal of subhalo duplicates.

BDM (Klypin et al. 1999) Local maxima in the density are identified (there are 
different possibilities for this), and then the bound set of 
particles in spherical apertures is determined



Finding dark matter 
satellites in simulations 
is a non-trivial task
 

AN ALGORITHMIC 
TECHNIQUE FOR SUBHALO 
IDENTIFICATION

Subhalo finding (SUBFIND)

(1) Estimate local DM density 
field

(2) Find locally overdense 
regions with topological 
method

(3) Subject each substructure 
candidate to a gravitational 
unbinding procedure

SUBFIND



495 subhalos (S2)

The subhalos formed 
in high-resolution 
simulations of cold 
dark matter can be 
reliably detected and 
extracted
 

SUBHALOS IN THE S2 
CLUSTER IDENTIFIED WITH 
SUBFIND



Abundance of 
substructure 



The mass-function of subhalos contained in a halo is a power-law 
which is dominated by the massive end
 

SUBHALO ABUNDANCE Differential mass-spectrum of subhalos

cluster    #subhalos
S1 118
S2 495

  S3 1848
  S4 4667

(Springel et al. 2001)

authors appear to agree that



The mass-function of subhalos in halos of widely differing mass 
shows very similar behaviour
 

SUBHALO ABUNDANCE IN A RICH CLUSTER AND A MILKY WAY SIZED HALO

(Springel et al. 2001) (Gao et al. 2004)

convergence study in rich cluster convergence study in Milky Way sized halo



Using the “zoom” technique, a set of high-resolution halos on different 
mass scales has been computed
 

THE SIMULATION SET OF GAO ET AL. (2004)

8 high-res clusters,
m = 5.1 x 108 M

⊙
/h,  = 5 kpc/h

A series of very high resolution 
simulation of a MW-sized halo
(GA0-GA3)

Parent large-scale 
structure simulation

Resimulation with spatially 
varying resolution

Internal structure of individual objects can be 
studied with very high resolution



The convergence in the velocity function suggests that we 
robustly measure the number of more massive subhalos
 

SUBHALO VELOCITY FUNCTION

Here the maximum circular velocity has been 
determined for each detected subhalos,which 
is more robust than the total mass



More massive halos show a slightly higher subhalo abundance
 

SUBHALO ABUNDANCE FOR SYSTEMS OF DIFFERENT MASS

differential cumulative

normalized subhalo mass normalized subhalo mass

The scale-invariance of the subhalo populations of halos of different mass is broken.

(Gao et al. 2004)

Due to their later formation time, more massive halos retain more substructure.



The subhalo abundance per unit halo mass appears to be universal
 

SUBHALO ABUNDANCE FOR SYSTEMS OF DIFFERENT MASS

differential cumulative

actual subhalo mass actual subhalo mass

The measurements are well described by the fitting function:
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Explains trend with 
parent mass in:

 

(a factor 2 for 3 decades in mass) 



The abundance of subhalos per unit parent mass is surprisingly close 
to the cosmological abundance of halos per unit mass in the Universe
 

SUBHALO ABUNDANCE FOR SYSTEMS OF DIFFERENT MASS

8 Clusters

GA3 simulation

Press & Schechter

Subhalo 
masses 
boosted by 
factor 2

The number of subhaloes 
per unit mass is quite 
similar to the number of 
small halos per unit mass 
in the surrounding universe

Note:
only subhalo 
mass above the 
local mean 
density in halo is 
counted by 
SUBFIND



The close 
correspondence with 
the Press&Schechter/ 
Sheth&Tormen mass 
function is also 
obtained at higher 
redshift
 

SUBHALO ABUNDANCE AT 
DIFFERENT REDSHIFTS

Subhalo 
masses 
boosted by 
factor 2



The mass 
fraction in 
substructure



Slightly conflicting results have been found for the mass fraction in 
subhalos
 

DIFFICULTIES IN DETERMINING THE SUBHALO MASS FRACTION

Obtaining precise mass fractions is problematic because:

slope is just a bit above -2 (below it, mass fraction would diverge)

there is large object-to-object variation because the most massive 
subhalos dominate the cumulative mass function

result may be influenced by subhalo detection scheme

Moore et al. (2001):     May approach unity

Springel et al. (2001):   ~10 %

Ghigna et al. (1998):    ~10-15 %

de Lucia et al. (2005):   ~6-10 %



The mass fraction in subhalos
 

SUBHALO ABUNDANCE FOR SYSTEMS OF DIFFERENT MASS

The cumulative fraction 
converges as smaller 
subhalos are included, and 
lower mass systems 
contain on average a 
smaller fraction of mass in 
subhalos.



The radial 
distribution of 
subhalos 



Subhalos are 
substantially less 
concentrated than 
the dark matter as 
a whole
 

CUMULATIVE RADIAL 
DISTRIBUTION OF 
SUBHALOS FOR HALOS 
OF DIFFERENT MASS

No significant dependence 
on the subhalo mass is 
found, and only very weak 
dependence on mass or 
concentration of parent halo.



As the maximum circular 
velocity should be more 
robustly measured than the 
total mass, this suggests that 
our mass measurements in the 
inner parts are presumably 
biased low

Different subhalo 
samples show 
similar radial 
concentrations
 

RADIAL DISTRIBUTION OF 
SUBHALOS FOR 
SUBHALOS ABOVE 
DIFFERENT SIZE LIMITS



Tracking 
Substructure 
over time



Analysis of many simulation 
outputs allows a measurement 
of the hierarchical build up of 
dark matter halos
 

FOLLOWING DARK MATTER IN TIME

Merger tree of a  cluster
(only progenitors above a 
minimum mass are shown) 



Tracking the fate of 
satellite galaxies in 
simulations is 
computationally and 
`logistically' complicated
 

A SKETCH OF A SUBHALO 
MERGING TREE

Merging tree of subhalos

(Note: we have recently done this  for 
a simulation with more than 1010 
particles, and more than 20 million 
halos at a given output time)



Mass loss as a 
function of time



Accreted substructures quickly loose a substantial fraction of their mass
RETAINED SUBHALO MASS FRACTION OF SURVIVING SUBHALOS



Most substructures at the present time have been accreted quite recently
FRACTION OF SUBHALOS WITH ACCRETION REDSHIFT LARGER THAN A GIVEN VALUE

Most subhalos are recent additions 
to a halo: only 10% of them were 
accreted earlier than z=1.

Surviving subhalos are accreted 
more recently than typical dark 
matter particles.



Accreted subhalos can be tracked over long times despite their 
continuing mass loss
THE FATE OF SUBHALOS ACCRETED AT  Z=1 fraction of

surving subhalos

fraction of mass in
surving subhalos

8 %while > 90% of subhalos 
are still tracked after 
accretion, their mass 
drops by a factor of 2 on 
average, in part due to 
the substructure 
identification method



The accretion time coincides with the peak 
in the mass accretion history of halos
MEAN MASS ACCRETION HISTORY OF CLUSTER 
SUBHALOS

1011 M⊙/h halos

1010 M⊙/h halos

De Lucia et al. (2004)



Streams and 
the phase-
space structure 
of halos



Satellite debris remains visible for a while as a stream in the phase-
space distribution of halos
EVOLUTION OF PHASE-SPACE DENSITY IN TIDAL DEBRIS

Is our Solar neighbourhood  
dominated by a single stream, 
or rather by many thousands?

Moore et al. (2001)

phase space evolution around a reference particle in tidal 
debris of an accreted satellite

Helmi, White & Springel (2003)



Tracking subhalo accretion in a high-resolution simulation allows an 
estimate of the number of streams passing through a volume
NUMBER OF STREAMS PREDICTED FOR THE MILKY WAY AT THE SOLAR CIRCLE

Helmi, White & Springel (2003)

measured in boxes 
of 2 kpc on a side

The Solar neighbourhood 
should be clumpy with a few 
105 intersecting streams!

let Nk be the count of particles per 
stream in some volume

an estimate for the mass-weighted 
mean mass per stream, corrected 
for Poisson noise is

We define the mass-weighted 
number of streams as the total 
mass in the box divided by the 
mean mass per stream. This can 
the be estimated as:



Radial structure 
of satellites



Subhalos are structurally different 
from their parent halo, with lower 
central densities and wider 
circular velocity curves
STRUCTURAL RESPONSE OF SUBHALOS TO 
MASS LOSS

Stoehr et al. (2003)

Shape of parent halo

This has implications for:

direct dark matter detection
correspondence between 
subhalos and observed dwarf 
galaxies in the MW

Circular velocity curves for subhalos in the GA3 simulation

Moore et al. (2001)Structural time evolution of an infalling subhalo

Hayashi et al. (2003), 
Stoehr et al. (2003):

Stripping reduces the density of a 
subhalo at all radii

peaks of circular velocity curves 
become narrower than parent halo

inner structure of subhalos 
substantially shallower than NFW



Implications of 
subhalos for 
annihilating dark 
matter



Dark matter could be self-annihilating, in which case the presence of 
subhalos should boost the expected flux
THE ANNIHILATION SIGNAL DUE TO SUBSTRUCTURES

Stoehr, White, Springel, Tormen, Yoshida (2003)

(Note: for a  -1.5 cusp, signal would formally diverge)

Estimate relevant density integral from:

(Particle densities are estimated with 
Voronoi tesselation. Corrections for 
Poisson noise are applied.)

Expect signal from:

central halo cusp
subhalos if their cuspy as well

Annihilation flux:
Expected emission from subhalos

Main halo



Substructures boost the annihiliation radiation by only a small amount, 
and none of them outshines the Galactic center
DISTRIBUTION OF THE ANNIHILATION SIGNAL BY SOURCE AND BY RADIUS

Convergence of emission from different sources Cumulative radial distribution of emission

annihilation signal from subhalos is dominated by the most massive ones, is preferentially in the outer parts, 
and is overall less than from the smooth inner halo (unlike Taylor & Silk 2003, Calcaneo-Roldan & Moore 2000)

unlikely that any of the subhalos would outshine the center (Sagittarius is already 24 kpc away)

central emission has an angular scale of several tens of degrees. It may be best observed off-centre, 25-35 
degrees away from the Galactic center 



Satellite 
population in 
the Milky Way



The "missing satellites" are viewed as a vexing problem for CDM
THE SATELLITE VELOCITY FUNCTION OF CDM COMPARED WITH MILKY WAY SATELLITES

Klypin et al. (1999) Moore et al. (1999)

Are the most massive subhalos too big? 
And what about the large abundance of small ones?
Are the most massive subhalos too big? 
And what about the large abundance of small ones?



The most massive subhalos in 
the simulations can plausible 
host all the known satellites in 
the Milky Way
THE PREDICTED CENTRAL VELOCITY 
DISPERSION COMPARED WITH MW 
SATELLITES

Stoehr, White & Springel (2002)

The observed line-of-sight 
velocity dispersions of the MW's 
dwarf galaxies need to be 
compared to a stellar model put 
inside the simulated dark matter 
subhalos, not to the subhalo 
circular velocities.

Assumptions:
spherical symmetry and isotropic velocity 
dispersion tensor
stellar density drops to zero at finite truncation 
radius (as observed) 
stellar density of dwarfs modelled with a King 
model

Number of subhalos where the predicted central dispersion is larger 
than observed

all 11 satellites of the MW can be accomodated in the 20 most 
massive subhalos



There is surprisingly good 
agreement between the 
kinematics of the observed 
satellites and the predicted 
ones for CDM subhalos
COMPARISON OF  VELOCITY 
DISPERSION PROFILES

Stoehr, White & Springel (2002)

Note:
● dark matter subgalos are much 

more extended than the stellar 
edge at the “tidal” radius

● A further reduction of the central 
subhalo densities (e.g. by self-
interacting dm) would make it 
difficult to explain the observed 
satellites



Provided reionization sterilizes small halos efficiently, the satellite 
population is well matched
THE VELOCITY DISTRIBUTION FUNCTION OF SUBHALOS THAT ORIGINATED IN RARE PEAKS

Moore et al. (2005)

Only those surviving 
subhalos which 
were already 
present at z=12 as 
2.5 peaks



Some direct hydrodynamical simulations 
do not seem to provide a sufficiently 
strong suppression of small halos by the 
UV background
BARYON FRACTION AND FILTERING MASS

need to suppress cooling for Vc<35-40 km/sec 
(corresponds to 1.5x1010 M⊙, or ~50000 K)
to make small satellite population dark

Hoeft, Yepes, Gottloeber & VS (2005)

Linear theory 
filtering mass, 
Gnedin (1998)

simulation result



Using subhalos for 
semi-analytic 
galaxy formation



Semi-analytic models are one of the most powerful 
techniques to study galaxy formation
 

MOST IMPORTANT INPUT PHYSICS

Semi- analytic 
machinery

Tully- Fisher 
relation

Galaxy 
colors

Star formation 
history

Luminosity 
function

Galaxy 
morphologies

Morphology 
density 
relation

Evolution to 
high redshift

Clustering 
properties

Radiative gas 
cooling

Morphological 
evolution

Dark matter 
merging 

history tree  

Feedback

Metal 
enrichment

Spectrophotometric 
evolution

Star formation

P
r e

d
ic

ti
o

n
s

In
p

u
t 

p
h

y
s

ic
s

Hierarchical growth of dark 
matter halos

Radiative cooling of gas within 
halos (dissipation)

Star formation and associated 
feedback processes

Spectrophotometric modeling of 
stellar populations

understood with high accuracy

in princible well within reach of current simu-
lations, yet plagued with numerical difficulties

highly uncertain physics, numerically 
extremely difficult

some uncertainties, but no/small 
coupling to gas dynamics

provided by 
simulations in 
“hybrid” models



The N-body resolution can be pushed to a point where essentially 
all luminous galaxies have a corresponding dark matter structure
 

CLUSTER LUMINOSITY FUNCTION AT VARIOUS RESOLUTIONS



Explicit tracking of subhalos provides a more faithful description 
of the merging rates of satellites
 

CLUSTER LUMINOSITY FUNCTION

Springel, White, Tormen & Kauffmann (2000)

Direct tracing of subhalos in the N-
Body simulation

Standard semi-analytic estimates 
of satellite survival times



Rarely, subhalos may 
collide and merge 
within a larger halo
 

A MERGER OF SUBHALOS

This happens rarely, but is 
kept track of in the semi-
analytic model

(Only 1 out of 20 subhalos 
merge with another subhalo 
before they fall into the center.)



The morphology-density relation arises naturally in hierarchical models 
of galaxy formation
 

MORPHOLOGICAL MIX
AS A FUNCTION OF
CLUSTER-CENTRIC DISTANCE



Max-Planck Institut für 
Astrophysik

Springel et al. (2004)

Millennium RunMillennium Run
10.077.960.000 particles10.077.960.000 particles

Max-Planck Institut für 
Astrophysik

Springel et al. (2004)

file:///home/volker/Berkeley_2004/talk_berkeley_2004.sxi/play_millennium.sh


The semi-analytic 
merger-tree in the 
Millennium Run 
connects about 800 
million subhalos
SCHEMATIC MERGER TREE 

Time

FirstProgenitor

NextProgenitor
Legend: Descendant

FirstHaloInFOFGroup

NextHaloInFOFGroup

Halo

FOF Group

Merger tree organization in the Millennium Run

The trees are stored as 
self-contained objects, 
which are the input to the 
semi-analytic code

Each tree corresponds to 
a FOF halo at z=0 (not 
always exactly)

The collection of all trees 
(a whole forest of them) 
describes all the 
structures/galaxies in the 
simulated universe



The merger tree in the Millennium simulation describes the orbits of all 
galaxies brighter than about 0.1 L✶
 

DARK MATTER AND GALAXY DISTRIBUTION IN A CLUSTER OF GALAXIES



The light distribution of galaxies on large scales
 

DENSITY OF RED AND BLUE GALAXIES



The distribution of dark matter on large scales
 

DARK MATTER DENSITY, COLOR-CODED BY DENSITY AND VELOCITY DISPERSION



The two-point 
correlation function of 
galaxies in the 
Millennium run is a 
very good power law
 

GALAXY TWO-POINT 
FUNCTION COMPARED 
WITH APM AND SDSS



The semi-analytic model fits a multitude of observational data
 

CLUSTERING BY MAGNITUDE AND COLOR



The semi-analytic model fits a multitude of observational data
 

B-V COLOUR DISTRIBUTION

Croton et al. (2004)


