Numerical Recipes

The Art of Scientific Computing Second Edition

Volume 1 of Fortran Numerical Recipes

William H. Press

Harvard-Smithsonian Center for Astrophysics

Saul A. Teukolsky

Department of Physics, Cornell University

William T. Vetterling

Polaroid Corporation

Brian P. Flannery

EXXON Research and Engineering Company

http://www.nr.com or call 1-800-872-7423 (North America only), or send email to directcustserv@cambridge.org (outside North America) Permission is granted for internet users to make one paper copy for their own personal use. Further reproduction, or any copying of machine-readable files (including this one) to any server computer, is strictly prohibited. To order Numerical Recipes books or CDROMs, visit website Sample page from NUMERICAL RECIPES IN FORTRAN 77: THE ART OF SCIENTIFIC COMPUTING (ISBN 0-521-43064-X) Copyright (C) 1986-1992 by Cambridge University Press. Programs Convirted (C) 1986-1992 by Computing (ISBN 0-521-43064-X) C) 1986-1992 by Cambridge University Press. Programs Convirted (C) 1986-1992 by Computing (ISBN 0-521-43064-X) 1986-1992 by Computing (ISBN 0-521-43064-X) 1986-1992 by Computing (C) 1986-1992 by Computing (C) 1986-1992 by C) 1986-1992 by Computing (C) 1986-1992 by Computing (C) 1986-1992 by Computing (C) 1986-1992 by C) 1986-1992 by Computing (C) 1986-1992 by C) Published by the Press Syndicate of the University of Cambridge The Pitt Building, Trumpington Street, Cambridge CB2 1RP 40 West 20th Street, New York, NY 10011-4211, USA 10 Stamford Road, Oakleigh, Melbourne 3166, Australia

Copyright © Cambridge University Press 1986, 1992 except for §13.10, which is placed into the public domain, and except for all other computer programs and procedures, which are Copyright © Numerical Recipes Software 1986, 1992, 1997 All Rights Reserved.

Some sections of this book were originally published, in different form, in Computers in Physics magazine, Copyright © American Institute of Physics, 1988-1992.

First Edition originally published 1986; Second Edition originally published 1992 as Numerical Recipes in FORTRAN: The Art of Scientific Computing Reprinted with corrections, 1993, 1994, 1995. Reprinted with corrections, 1996, 1997, 2001, as Numerical Recipes in Fortran 77: The Art of Scientific Computing (Vol. 1 of Fortran Numerical Recipes)

This reprinting is corrected to software version 2.10

Printed in the United States of America Typeset in T_FX

Without an additional license to use the contained software, this book is intended as a text and reference book, for reading purposes only. A free license for limited use of the software by the individual owner of a copy of this book who personally types one or more routines into a single computer is granted under terms described on p. xxi. See the section "License Information" (pp. xx-xxiii) for information on obtaining more general licenses a low cost.

Machine-readable media containing the software in this book, with included licenses for use on a single screen, are available from Cambridge University Press. See the order form at the back of the book, email to "orders@cup.org" (North America) or 'trade@cup.cam.ac.uk" (rest of world), or write to Cambridge University Press, 110 Midland Avenue, Port Chester, NY 10573 (USA), for further information.

The software may also be downloaded, with immediate purchase of a license also possible, from the Numerical Recipes Software Web Site (http://www.nr.com). Unlicensed transfer of Numerical Recipes programs to any other format, or to any computer except one that is specifically licensed, is strictly prohibited. Technical questions. corrections, and requests for information should be addressed to Numerical Recipes Software, P.O. Box 243, Cambridge, MA 02238 (USA), email "info@nr.com", or fax 781 863-1739.

Library of	Congress	Catal	loging	in	Pub	lication	Data
------------	----------	-------	--------	----	-----	----------	------

Numerical recipes in Fortran 77 : the art of scientific computing / William H. Press ... [et al.]. – 2nd ed.

Includes bibliographical references (p.) and index.

ISBN 0-521-43064-X

1. Numerical analysis-Computer programs. 2. Science-Mathematics-Computer programs. 3. FORTRAN (Computer program language) I. Press, William H. QA297.N866 1992 519.4'0285'53-dc20 92-8876

A catalog record for this book is available from the British Library.

ISBN	0 521 43064 X	Volume 1 (this book)
ISBN	0 521 57439 0	Volume 2
ISBN	0 521 43721 0	Example book in FORTRAN
ISBN	0 521 57440 4	FORTRAN diskette (IBM 3.5")
ISBN	0 521 57608 3	CDROM (IBM PC/Macintosh)
ISBN	0 521 57607 5	CDROM (UNIX)

Contents

	Plan of the Two-Volume Edition	xiii
	Preface to the Second Edition	xv
	Preface to the First Edition	xviii
	License Information	xx
	Computer Programs by Chapter and Section	xxiv
1	Preliminaries	1
	1.0 Introduction	1
	1.1 Program Organization and Control Structures	5
	1.2 Error, Accuracy, and Stability	18
2	Solution of Linear Algebraic Equations	22
	2.0 Introduction	22
	2.1 Gauss-Jordan Elimination	27
	2.2 Gaussian Elimination with Backsubstitution	33
	2.3 LU Decomposition and Its Applications	34
	2.4 Tridiagonal and Band Diagonal Systems of Equations	42
	2.5 Iterative Improvement of a Solution to Linear Equations	47
	2.6 Singular Value Decomposition	51
	2.7 Sparse Linear Systems	63
	2.8 Vandermonde Matrices and Toeplitz Matrices	82
	2.9 Cholesky Decomposition	89
	2.10 QR Decomposition	91
	2.11 Is Matrix Inversion an N° Process?	95
3	Interpolation and Extrapolation	99
	3.0 Introduction	99
	3.1 Polynomial Interpolation and Extrapolation	102
	3.2 Rational Function Interpolation and Extrapolation	104
	3.3 Cubic Spline Interpolation	107
	3.4 How to Search an Ordered Table	110
	3.5 Coefficients of the Interpolating Polynomial	113
	3.6 Interpolation in Two or More Dimensions	116

3.6 Interpolation in Two or More Dimensions

vi	Contents		
4	Integration of Functions	123	
	4.0 Introduction	123	
	4.1 Classical Formulas for Equally Spaced Abscissas	124	
	4.2 Elementary Algorithms	130	
	4.3 Romberg Integration	134	
	4.4 Improper Integrals	135	
	4.5 Gaussian Quadratures and Orthogonal Polynomials	140	amp adal tp:///
	4.6 Multidimensional Integrals	155	le pa ssior ble fil www.
5	Evaluation of Functions	159	ge fron C) 198 i is grai es (inc nr.com
	5.0 Introduction	159	n NL Inted
	5.1 Series and Their Convergence	159	JME 992 call
	5.2 Evaluation of Continued Fractions	163	1-80
	5.3 Polynomials and Rational Functions	167	AL DO-8
	5.4 Complex Arithmetic	171	REC rid 72-7
	5.5 Recurrence Relations and Clenshaw's Recurrence Formula	172	IPE rs to 123 17423
	5.6 Quadratic and Cubic Equations	178	S IN O ma
	5.7 Numerical Derivatives	180	v FC
	5.8 Chebyshev Approximation	184	one Ame
	5.9 Derivatives or Integrals of a Chebyshev-approximated Function	189	RAN pap uter erica
	5.10 Polynomial Approximation from Chebyshev Coefficients	191	Prc Prc i onl
	5.11 Economization of Power Series	192	TH opy strict y), c
	5.12 Padé Approximants	194	fort se
	5.13 Rational Chebyshev Approximation	197	nd e
	5.14 Evaluation of Functions by Path Integration	201	ovright orited orited
6	Special Functions	205	CIENT (C) 19 persol To or to dire
	6 0 Introduction	205	HFIC
	6.1 Gamma Function Beta Function Factorials Binomial Coefficients	205	199 Sec Num Sec Sec Sec Sec Sec Sec Sec Sec Sec Sec
	6.2 Incomplete Gamma Function Error Function Chi-Square	200	2 by Puric 9rv €
	Probability Function, Cumulative Poisson Function	209	al R
	6.3 Exponential Integrals	215	neri neri nbri
	6.4 Incomplete Beta Function. Student's Distribution. F-Distribution.	-	(ISB odu dge
	Cumulative Binomial Distribution	219	org
	6.5 Bessel Functions of Integer Order	223	ipes 1, or (out
	6.6 Modified Bessel Functions of Integer Order	229	side CD
	6.7 Bessel Functions of Fractional Order, Airy Functions, Spherical		ROI No
	Bessel Functions	234	rth / Syin
	6.8 Spherical Harmonics	246	g of Visit
	6.9 Fresnel Integrals, Cosine and Sine Integrals	248	maq wet
	6.10 Dawson's Integral	252	chin osite).
	6.11 Elliptic Integrals and Jacobian Elliptic Functions	254	Ψφ
	6.12 Hypergeometric Functions	263	
7	Random Numbers	266	
	7.0 Introduction	266	
	7.1 Uniform Deviates	267	

Contents

	Contents	vii
	7.2 Transformation Method: Exponential and Normal Deviates	277
	7.3 Rejection Method: Gamma, Poisson, Binomial Deviates	281
	7.4 Generation of Random Bits	287
	7.5 Random Sequences Based on Data Encryption	290
	7.6 Simple Monte Carlo Integration	295
	7.7 Quasi- (that is, Sub-) Random Sequences	299
	7.8 Adaptive and Recursive Monte Carlo Methods	306
8	Sorting	320
	8.0 Introduction	320
	8.1 Straight Insertion and Shell's Method	321
	8.2 Quicksort	323
	8.3 Heapsort	327
	8.4 Indexing and Ranking	329
	8.5 Selecting the <i>M</i> th Largest	333
	8.6 Determination of Equivalence Classes	337
9	Root Finding and Nonlinear Sets of Equations	340
	9.0 Introduction	340
	9.1 Bracketing and Bisection	343
	9.2 Secant Method, False Position Method, and Ridders' Method	347
	9.3 Van Wijngaarden–Dekker–Brent Method	352
	9.4 Newton-Raphson Method Using Derivative	355
	9.5 Roots of Polynomials	362
	9.6 Newton-Raphson Method for Nonlinear Systems of Equations	372
	9.7 Globally Convergent Methods for Nonlinear Systems of Equations	376
10	Minimization or Maximization of Functions	387
	10.0 Introduction	387
	10.1 Golden Section Search in One Dimension	390
	10.2 Parabolic Interpolation and Brent's Method in One Dimension	395
	10.3 One-Dimensional Search with First Derivatives	399
	10.4 Downhill Simplex Method in Multidimensions	402
	10.5 Direction Set (Powell's) Methods in Multidimensions	406
	10.6 Conjugate Gradient Methods in Multidimensions	413
	10.7 Variable Metric Methods in Multidimensions	418
	10.8 Linear Programming and the Simplex Method	423
	10.9 Simulated Annealing Methods	436
11	Eigensystems	449
	11.0 Introduction	449
	11.1 Jacobi Transformations of a Symmetric Matrix	456
	11.2 Reduction of a Symmetric Matrix to Tridiagonal Form:	
	Givens and Householder Reductions	462
	11.3 Eigenvalues and Eigenvectors of a Tridiagonal Matrix	469
	11.4 Hermitian Matrices	475
	11.5 Reduction of a General Matrix to Hessenberg Form	476

viii	Contents		
	11.6 The QR Algorithm for Real Hessenberg Matrices	480	
	11.7 Improving Eigenvalues and/or Finding Eigenvectors by		
	Inverse Iteration	487	
12	Fast Fourier Transform	490	
	12.0 Introduction	490	מסם גב
	12.1 Fourier Transform of Discretely Sampled Data	494	opy erm ttp://
	12.2 Fast Fourier Transform (FFT)	498	right issic ww
	12.3 FFT of Real Functions, Sine and Cosine Transforms	504	age (C) files
	12.4 FFT in Two or More Dimensions	515	fror 198 (inc
	12.5 Fourier Transforms of Real Data in Two and Three Dimensions	519	n ntec 1 or
	12.6 External Storage or Memory-Local FFTs	525	JME 992 ng th call
13	Fourier and Spectral Applications	530	NCAL nterne I-800-
	13.0 Introduction	530	et us 872-
	13.1 Convolution and Deconvolution Using the EFT	531	dge ers t any 742
	13.2 Correlation and Autocorrelation Using the FFT	538	i3 (N ⊂ ES I
	13.3 Optimal (Wiener) Filtering with the FFT	530	N F Nake
	13.4 Power Spectrum Estimation Using the FFT	542	ity F
	13.5 Digital Filtering in the Time Domain	551	rRA res pa pute
	13.6 Linear Prediction and Linear Predictive Coding	557	a ol
	13.7 Power Spectrum Estimation by the Maximum Entropy	551	rogra copy stria nly),
	(All Poles) Method	565	or s
	13.8 Spectral Analysis of Unevenly Sampled Data	569	end Col
	13.9 Computing Fourier Integrals Using the FFT	577	ir ov ibite
	13.10 Wavelet Transforms	584	ail t
	13.11 Numerical Use of the Sampling Theorem	600	o dir
			rlFIC 986- nal u rder ectcu
14	Statistical Description of Data	603	-1992 Jse. F Nume Jstser
	14.0 Introduction	603	v@o
	14.1 Moments of a Distribution: Mean, Variance, Skewness,		aml aml
	and So Forth	604	G (IS pro brid
	14.2 Do Two Distributions Have the Same Means or Variances?	609	ge.o
	14.3 Are Two Distributions Different?	614	0-5 iion, rg (
	14.4 Contingency Table Analysis of Two Distributions	622	or es s
	14.5 Linear Correlation	630	ide l
	14.6 Nonparametric or Rank Correlation	633	Nort Nort
	14.7 Do Two-Dimensional Distributions Differ?	640	h Ar
	14.8 Savitzky-Golay Smoothing Filters	644	of m sit w neric
15	Modeling of Data	650	achin ebsite va).
	15.0 Introduction	650	φ
	15.1 Least Squares as a Maximum Likelihood Estimator	651	
	15.2 Fitting Data to a Straight Line	655	
	15.3 Straight-Line Data with Errors in Both Coordinates	660	
	15.4 General Linear Least Squares	665	
	15.5 Nonlinear Models	675	

	Contents	ix
	15.6 Confidence Limits on Estimated Model Parameters	684
	15.7 Robust Estimation	694
16	Integration of Ordinary Differential Equations	701
	16.0 Introduction	701
	16.1 Runge-Kutta Method	704
	16.2 Adaptive Stepsize Control for Runge-Kutta	708
	16.3 Modified Midpoint Method	716
	16.4 Richardson Extrapolation and the Bulirsch-Stoer Method	718
	16.5 Second-Order Conservative Equations	726
	16.6 Stiff Sets of Equations	727
	16.7 Multistep, Multivalue, and Predictor-Corrector Methods	740
17	Two Point Boundary Value Problems	745
	17.0 Introduction	745
	17.1 The Shooting Method	749
	17.2 Shooting to a Fitting Point	751
	17.3 Relaxation Methods	753
	17.4 A Worked Example: Spheroidal Harmonics	764
	17.5 Automated Allocation of Mesh Points	774
	17.6 Handling Internal Boundary Conditions or Singular Points	775
18	Integral Equations and Inverse Theory	779
	18.0 Introduction	779
	18.1 Fredholm Equations of the Second Kind	782
	18.2 Volterra Equations	786
	18.3 Integral Equations with Singular Kernels	788
	18.4 Inverse Problems and the Use of A Priori Information	795
	18.5 Linear Regularization Methods	799
	18.6 Backus-Gilbert Method	806
	18.7 Maximum Entropy Image Restoration	809
19	Partial Differential Equations	818
	19.0 Introduction	818
	19.1 Flux-Conservative Initial Value Problems	825
	19.2 Diffusive Initial Value Problems	838
	19.3 Initial Value Problems in Multidimensions	844
	19.4 Fourier and Cyclic Reduction Methods for Boundary	
	Value Problems	848
	19.5 Relaxation Methods for Boundary Value Problems	854
	19.6 Multigrid Methods for Boundary Value Problems	862
20	Less-Numerical Algorithms	881
	20.0 Introduction	881
	20.1 Diagnosing Machine Parameters	881
	20.2 Grav Codes	886

X	Contents		
2	0.3 Cyclic Redundancy and Other Checksums 0.4 Huffman Coding and Compression of Data	888 896	
2	0.5 Arithmetic Coding	902	
2	0.6 Arithmetic at Arbitrary Precision	906	
F	References for Volume 1	916	rea http://www.com
I	ndex of Programs and Dependencies (Vol. 1)	921	mpre pag pyright ((mission dable file p://www.u
(General Index to Volumes 1 and 2		D) 1986-1992 C) 1986-1992 is granted for es (including the nr.com or call
Co	ontents of Volume 2: Numerical Recipes in Fortra	an 90	trickic keck by Cambridge internet users his one) to any 1-800-872-74;
	Preface to Volume 2	viii	23 (No
	Foreword by Michael Metcalf	x	r com rsity F r com
	License Information	xvii	Press. P Paper puter, is nerica o
21	Introduction to Fortran 90 Language Features	935	rograms copy for strictly nly), or s
22	Introduction to Parallel Programming	962	s Copy r their prohit send e
23	Numerical Recipes Utilities for Fortran 90	987	yright (own p oited. T email to
	Fortran 90 Code Chapters	1009	C) 1986-1 ersonal u: o order N directcu
B1	Preliminaries	1010	992 by 992 Furt se. Furt lumeric stserv €
B 2	Solution of Linear Algebraic Equations	1014	Nume ther re al Rec
B 3	Interpolation and Extrapolation	1043	produc produc produc pridge.
B4	Integration of Functions	1052	v 0-32 Recipe stion, o org (o
B 5	Evaluation of Functions	1070	s Soft or any or CDF utside
B6	Special Functions	1083	ware. copyir ROMs, North
B 7	Random Numbers	1141	ng of n visit w Amerii
B 8	Sorting	1167	nachin vebsite ca).
B9	Root Finding and Nonlinear Sets of Equations	1182	Ψφ
B10	Minimization or Maximization of Functions	1201	
B11	Eigensystems	1225	
B12	Fast Fourier Transform	1235	

Contents	xi
Fourier and Spectral Applications	1253
Statistical Description of Data	1269
Modeling of Data	1285
Integration of Ordinary Differential Equations	1297
Two Point Boundary Value Problems	1314
Integral Equations and Inverse Theory	1325
Partial Differential Equations	1332
Less-Numerical Algorithms	1343
References for Volume 2	1359
Appendices	
Listing of Utility Modules (nrtype and nrutil)	1361
Listing of Explicit Interfaces	1384
Index of Programs and Dependencies (Vol. 2)	1434
General Index to Volumes 1 and 2	1447
	Fourier and Spectral Applications Statistical Description of Data Modeling of Data Integration of Ordinary Differential Equations Two Point Boundary Value Problems Integral Equations and Inverse Theory Partial Differential Equations Less-Numerical Algorithms References for Volume 2 Appendices Listing of Utility Modules (nrtype and nrutil) Listing of Explicit Interfaces Index of Programs and Dependencies (Vol. 2) General Index to Volumes 1 and 2

Plan of the Two-Volume Edition

Fortran, long the epitome of stability, is once again a language in flux. Fortran 90 is not just the long-awaited updating of traditional Fortran 77 to modern computing practices, but also demonstrates Fortran's decisive bid to be the language of choice for parallel programming on multiprocessor computers.

At the same time, Fortran 90 is completely backwards-compatible with all Fortran 77 code. So, users with legacy code, or who choose to use only older language constructs, will still get the benefit of updated and actively maintained compilers.

As we, the authors of *Numerical Recipes*, watched the gestation and birth of Fortran 90 by its governing standards committee (an interesting process described by a leading Committee member, Michael Metcalf, in the Foreword to our Volume 2), it became clear to us that the right moment for moving Numerical Recipes from Fortran 77 to Fortran 90 was sooner, rather than later.

On the other hand, it was equally clear that Fortran-77-style programming no matter whether with Fortran 77 or Fortran 90 compilers — is, and will continue for a long time to be, the "mother tongue" of a large population of active scientists, engineers, and other users of numerical computation. This is not a user base that we would willingly or knowingly abandon.

The solution was immediately clear: a two-volume edition of the Fortran *Numerical Recipes* consisting of Volume 1 (this one, a corrected reprinting of the previous one-volume edition), now retitled *Numerical Recipes in Fortran 77*, and a completely new Volume 2, titled *Numerical Recipes in Fortran 90: The Art of* Parallel *Scientific Computing.* Volume 2 begins with three chapters (21, 22, and 23) that extend the narrative of the first volume to the new subjects of Fortran 90 language features, parallel programming methodology, and the implementation of certain useful utility functions in Fortran 90. Then, in exact correspondence with Volume 1's Chapters 1–20, are new chapters B1–B20, devoted principally to the listing and explanation of new Fortran 90 routines. With a few exceptions, each Fortran 77 routine in Volume 1 has a corresponding new Fortran 90 version in Volume 2. (The exceptions are a few new capabilities, notably in random number generation and in multigrid PDE solvers, that are unique to Volume 2's Fortran 90.) Otherwise, there is no duplication between the volumes. The detailed explanation of the algorithms in this Volume 1 is intended to apply to, and be essential for, both volumes.

In other words: **You can use this Volume 1 without having Volume 2, but you can't use Volume 2 without Volume 1.** We think that there is much to be gained by having and using *both* volumes: Fortran 90's parallel language constructions are not only useful for present and future multiprocessor machines; they also allow for the elegant and concise formulation of many algorithms on ordinary single-processor computers. We think that essentially *all* Fortran programmers will want gradually to migrate into Fortran 90 and into a mode of "thinking parallel." We have written Volume 2 specifically to help with this important transition.

Volume 2's discussion of parallel programming is focused on those issues of direct relevance to the Fortran 90 programmer. Some more general aspects of parallel programming, such as communication costs, synchronization of multiple processers, etc., are touched on only briefly. We provide references to the extensive literature on these more specialized topics.

Copyright (C) 1986-1992 by Cambridge University Press. Programs Copyright (C) 1986-1992 by Numerical Recipes Software. Permission is granted for internet users to make one paper copy for their own personal use. Further reproduction, or any copying of machine-readable files (including this one) to any server computer, is strictly prohibited. To order Numerical Recipes books or CDROMs, visit website http://www.nr.com or call 1-800-872-7423 (North America only), or send email to directcustserv@cambridge.org (outside North America). Sample page from NUMERICAL RECIPES IN FORTRAN 77: THE ART OF SCIENTIFIC COMPUTING (ISBN 0-521-43064-X) Copyright (C) 1986-1992 by Cambridge University Press. Programs Copyright (C) 1986-1992 by Numerical Recipes Software. A special note to C programmers: Right now, there is no effort at producing a parallel version of C that is comparable to Fortran 90 in maturity, acceptance, and stability. We think, therefore, that C programmers will be well served by using Volume 2, either in conjuction with this Volume 1 or else in conjunction with the sister volume *Numerical Recipes in C: The Art of Scientific Computing*, for an educational excursion into Fortran 90, its parallel programming constructions, and the numerical algorithms that capitalize on them. C and C++ programming have not been far from our minds as we have written this two-volume version. We think you will find that time spent in absorbing the principal lessons of Volume 2's Chapters 21–23 will be amply repaid in the future, as C and C++ eventually develop standard parallel extensions.

Preface to the Second Edition

Our aim in writing the original edition of *Numerical Recipes* was to provide a book that combined general discussion, analytical mathematics, algorithmics, and actual working programs. The success of the first edition puts us now in a difficult, though hardly unenviable, position. We wanted, then and now, to write a book that is informal, fearlessly editorial, unesoteric, and above all useful. There is a danger that, if we are not careful, we might produce a second edition that is weighty, balanced, scholarly, and boring.

It is a mixed blessing that we know more now than we did six years ago. Then, we were making educated guesses, based on existing literature and our own research, about which numerical techniques were the most important and robust. Now, we have the benefit of direct feedback from a large reader community. Letters to our alter-ego enterprise, Numerical Recipes Software, are in the thousands per year. (Please, *don't telephone* us.) Our post office box has become a magnet for letters pointing out that we have omitted some particular technique, well known to be important in a particular field of science or engineering. We value such letters, and digest them carefully, especially when they point us to specific references in the literature.

The inevitable result of this input is that this Second Edition of *Numerical Recipes* is substantially larger than its predecessor, in fact about 50% larger both in words and number of included programs (the latter now numbering well over 300). "Don't let the book grow in size," is the advice that we received from several wise colleagues. We have tried to follow the intended spirit of that advice, even as we violate the letter of it. We have not lengthened, or increased in difficulty, the book's principal discussions of mainstream topics. Many new topics are presented at this same accessible level. Some topics, both from the earlier edition and new to this one, are now set in smaller type that labels them as being "advanced." The reader who ignores such advanced sections completely will not, we think, find any lack of continuity in the shorter volume that results.

Here are some highlights of the new material in this Second Edition:

- a new chapter on integral equations and inverse methods
- a detailed treatment of multigrid methods for solving elliptic partial differential equations
- routines for band diagonal linear systems
- improved routines for linear algebra on sparse matrices
- Cholesky and QR decomposition
- orthogonal polynomials and Gaussian quadratures for arbitrary weight functions
- methods for calculating numerical derivatives
- Padé approximants, and rational Chebyshev approximation
- Bessel functions, and modified Bessel functions, of fractional order; and several other new special functions
- improved random number routines
- quasi-random sequences
- routines for adaptive and recursive Monte Carlo integration in highdimensional spaces
- · globally convergent methods for sets of nonlinear equations

- simulated annealing minimization for continuous control spaces
- fast Fourier transform (FFT) for real data in two and three dimensions
- fast Fourier transform (FFT) using external storage
- improved fast cosine transform routines
- wavelet transforms
- Fourier integrals with upper and lower limits
- spectral analysis on unevenly sampled data
- Savitzky-Golay smoothing filters
- fitting straight line data with errors in both coordinates
- a two-dimensional Kolmogorov-Smirnoff test
- the statistical bootstrap method
- embedded Runge-Kutta-Fehlberg methods for differential equations
- high-order methods for stiff differential equations
- a new chapter on "less-numerical" algorithms, including Huffman and arithmetic coding, arbitrary precision arithmetic, and several other topics.

Consult the Preface to the First Edition, following, or the Table of Contents, for a list of the more "basic" subjects treated.

Acknowledgments

It is not possible for us to list by name here all the readers who have made useful suggestions; we are grateful for these. In the text, we attempt to give specific attribution for ideas that appear to be original, and not known in the literature. We apologize in advance for any omissions.

Some readers and colleagues have been particularly generous in providing us with ideas, comments, suggestions, and programs for this Second Edition. We especially want to thank George Rybicki, Philip Pinto, Peter Lepage, Robert Lupton, Douglas Eardley, Ramesh Narayan, David Spergel, Alan Oppenheim, Sallie Baliunas, Scott Tremaine, Glennys Farrar, Steven Block, John Peacock, Thomas Loredo, Matthew Choptuik, Gregory Cook, L. Samuel Finn, P. Deuflhard, Harold Lewis, Peter Weinberger, David Syer, Richard Ferch, Steven Ebstein, and William Gould. We have been helped by Nancy Lee Snyder's mastery of a complicated T_EX manuscript. We express appreciation to our editors Lauren Cowles and Alan Harvey at Cambridge University Press, and to our production editor Russell Hahn. We remain, of course, grateful to the individuals acknowledged in the Preface to the First Edition.

Special acknowledgment is due to programming consultant Seth Finkelstein, who influenced many of the routines in this book, and wrote or rewrote many more routines in its C-language twin and the companion Example books. Our project has benefited enormously from Seth's talent for detecting, and following the trail of, even very slight anomalies (often compiler bugs, but occasionally our errors), and from his good programming sense.

We prepared this book for publication on DEC and Sun workstations running the UNIX operating system, and on a 486/33 PC compatible running MS-DOS 5.0/Windows 3.0. (See §1.0 for a list of additional computers used in program tests.) We enthusiastically recommend the principal software used: GNU Emacs, T_EX, Perl, Adobe Illustrator, and PostScript. Also used were a variety of FORTRAN compilers — too numerous (and sometimes too buggy) for individual

nttp://www.nr.com or call sample page trom eadable files (including this one) to any server computer, is strictly prohibited ^oermission is granted NUMERICAL RECIPES 992 by Cambridge University Press. Programs Copyright (C) 1986-1992 by Numerical Recipes Software. for internet users to make one paper copy for their own personal use. Further reproduction, or any copying of machine-ng this one) to any server computer, is strictly prohibited. To order Numerical Recipes books or CDROMs, visit website call 1-800-872-7423 (North America only), or send email to directcustserv@cambridge.org (outside North America). IN FORTRAN 77: THE ART OF ART OF SCIENTIFIC Copyright (C) 1986-1 1986-1992 by Numerical Recipes Software. acknowledgment. It is a sobering fact that our standard test suite (exercising all the routines in this book) has uncovered compiler bugs in a large majority of the compilers tried. When possible, we work with developers to see that such bugs get fixed; we encourage interested compiler developers to contact us about such arrangements.

WHP and SAT acknowledge the continued support of the U.S. National Science Foundation for their research on computational methods. D.A.R.P.A. support is acknowledged for §13.10 on wavelets.

June, 1992

William H. Press Saul A. Teukolsky William T. Vetterling Brian P. Flannery

Preface to the First Edition

We call this book *Numerical Recipes* for several reasons. In one sense, this book is indeed a "cookbook" on numerical computation. However there is an important distinction between a cookbook and a restaurant menu. The latter presents choices among complete dishes in each of which the individual flavors are blended and disguised. The former — and this book — reveals the individual ingredients and explains how they are prepared and combined.

Another purpose of the title is to connote an eclectic mixture of presentational techniques. This book is unique, we think, in offering, for each topic considered, a certain amount of general discussion, a certain amount of analytical mathematics, a certain amount of discussion of algorithmics, and (most important) actual implementations of these ideas in the form of working computer routines. Our task has been to find the right balance among these ingredients for each topic. You will find that for some topics we have tilted quite far to the analytic side; this where we have felt there to be gaps in the "standard" mathematical training. For other topics, where the mathematical prerequisites are universally held, we have tilted towards more in-depth discussion of the nature of the computational algorithms, or towards practical questions of implementation.

We admit, therefore, to some unevenness in the "level" of this book. About half of it is suitable for an advanced undergraduate course on numerical computation for science or engineering majors. The other half ranges from the level of a graduate course to that of a professional reference. Most cookbooks have, after all, recipes at varying levels of complexity. An attractive feature of this approach, we think, is that the reader can use the book at increasing levels of sophistication as his/her experience grows. Even inexperienced readers should be able to use our most advanced routines as black boxes. Having done so, we hope that these readers will subsequently go back and learn what secrets are inside.

If there is a single dominant theme in this book, it is that practical methods of numerical computation can be simultaneously efficient, clever, and — important — clear. The alternative viewpoint, that efficient computational methods must necessarily be so arcane and complex as to be useful only in "black box" form, we firmly reject.

Our purpose in this book is thus to open up a large number of computational black boxes to your scrutiny. We want to teach you to take apart these black boxes and to put them back together again, modifying them to suit your specific needs. We assume that you are mathematically literate, i.e., that you have the normal mathematical preparation associated with an undergraduate degree in a physical science, or engineering, or economics, or a quantitative social science. We assume that you know how to program a computer. We do not assume that you have any prior formal knowledge of numerical analysis or numerical methods.

The scope of *Numerical Recipes* is supposed to be "everything up to, but not including, partial differential equations." We honor this in the breach: First, we *do* have one introductory chapter on methods for partial differential equations (Chapter 19). Second, we obviously cannot include *everything* else. All the so-called "standard" topics of a numerical analysis course have been included in this book:

copyright (C) 1986-1992 by Cambridge University Press. Programs Copyright (C) 1986-1992 by Numerical Recipes Software. Permission is granted for internet users to make one paper copy for their own personal use. Further reproduction, or any copying of machine readable files (including this one) to any server computer, is strictly prohibited. To order Numerical Recipes books or CDROMs, visit website Sample page from NUMERICAL RECIPES IN FORTRAN 77: THE ART OF SCIENTIFIC COMPUTING (ISBN 0-521-43064-X) Copyright (C) 1986-1992 by Cambridge University Press. Programs Copyright (C) 1986-1992 by Numerical Recipes Software. http://www.nr.com or call 1-800-872-7423 (North America only), or send email to directcustserv@cambridge.org (outside North America)

linear equations (Chapter 2), interpolation and extrapolation (Chaper 3), integration (Chaper 4), nonlinear root-finding (Chapter 9), eigensystems (Chapter 11), and ordinary differential equations (Chapter 16). Most of these topics have been taken beyond their standard treatments into some advanced material which we have felt to be particularly important or useful.

Some other subjects that we cover in detail are not usually found in the standard numerical analysis texts. These include the evaluation of functions and of particular special functions of higher mathematics (Chapters 5 and 6); random numbers and Monte Carlo methods (Chapter 7); sorting (Chapter 8); optimization, including multidimensional methods (Chapter 10); Fourier transform methods, including FFT methods and other spectral methods (Chapters 12 and 13); two chapters on the statistical description and modeling of data (Chapters 14 and 15); and two-point boundary value problems, both shooting and relaxation methods (Chapter 17).

The programs in this book are included in ANSI-standard FORTRAN-77. Versions of the book in C, Pascal, and BASIC are available separately. We have more to say about the FORTRAN language, and the computational environment assumed by our routines, in $\S1.1$ (Introduction).

Acknowledgments

Many colleagues have been generous in giving us the benefit of their numerical and computational experience, in providing us with programs, in commenting on the manuscript, or in general encouragement. We particularly wish to thank George Rybicki, Douglas Eardley, Philip Marcus, Stuart Shapiro, Paul Horowitz, Bruce Musicus, Irwin Shapiro, Stephen Wolfram, Henry Abarbanel, Larry Smarr, Richard Muller, John Bahcall, and A.G.W. Cameron.

We also wish to acknowledge two individuals whom we have never met: Forman Acton, whose 1970 textbook *Numerical Methods that Work* (New York: Harper and Row) has surely left its stylistic mark on us; and Donald Knuth, both for his series of books on *The Art of Computer Programming* (Reading, MA: Addison-Wesley), and for T_EX, the computer typesetting language which immensely aided production of this book.

Research by the authors on computational methods was supported in part by the U.S. National Science Foundation.

October, 1985

William H. Press Brian P. Flannery Saul A. Teukolsky William T. Vetterling

Sample page from NUMERICAL RECIPES Copyright (C) 1986-1992 by Cambridge Uni Copyright (C) 1986-1992 by Cambridge University Press. Programs Copyright (C) 1986-1992 by Numerical Recipes Software. Permission is granted for internet users to make one paper copy for their own personal use. Further reproduction, or any copying of machine-readable files (including this one) to any server computer, is strictly prohibited. To order Numerical Recipes books or CDROMs, visit website http://www.nr.com or call 1-800-872-7423 (North America only), or send email to directcustserv@cambridge.org (outside North America). IN FORTRAN 77: THE ART OF ART OF SCIENTIFIC Copyright (C) 1986-1 COMPUTING (ISBN 0-521-43064-X