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xi(j)=xmin*xi(j)
p(j)=p(j)+xi(j)

enddo 12

return
END

FUNCTION f1dim(x)
INTEGER NMAX
REAL f1dim,func,x
PARAMETER (NMAX=50)

C USES func
Used by linmin as the function passed to mnbrak and brent.

INTEGER j,ncom
REAL pcom(NMAX),xicom(NMAX),xt(NMAX)
COMMON /f1com/ pcom,xicom,ncom
do 11 j=1,ncom

xt(j)=pcom(j)+x*xicom(j)
enddo 11

f1dim=func(xt)
return
END

CITED REFERENCES AND FURTHER READING:

Brent, R.P. 1973, Algorithms for Minimization without Derivatives (Englewood Cliffs, NJ: Prentice-
Hall), Chapter 7. [1]

Acton, F.S. 1970, Numerical Methods That Work; 1990, corrected edition (Washington: Mathe-
matical Association of America), pp. 464–467. [2]

Jacobs, D.A.H. (ed.) 1977, The State of the Art in Numerical Analysis (London: Academic
Press), pp. 259–262.

10.6 Conjugate Gradient Methods in
Multidimensions

We consider now the case where you are able to calculate, at a given N -
dimensional point P, not just the value of a function f(P) but also the gradient
(vector of first partial derivatives) ∇f(P).

A rough counting argument will show how advantageous it is to use the gradient
information: Suppose that the function f is roughly approximated as a quadratic
form, as above in equation (10.5.1),

f(x) ≈ c − b · x +
1
2

x · A · x (10.6.1)

Then the number of unknown parameters in f is equal to the number of free
parameters in A and b, which is 1

2N(N + 1), which we see to be of order N 2.
Changing any one of these parameters can move the location of the minimum.
Therefore, we should not expect to be able to find the minimum until we have
collected an equivalent information content, of order N 2 numbers.
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In the direction set methods of §10.5, we collected the necessary information by
making on the order of N 2 separate line minimizations, each requiring “a few” (but
sometimes a big few!) function evaluations. Now, each evaluation of the gradient
will bring us N new components of information. If we use them wisely, we should
need to make only of order N separate line minimizations. That is in fact the case
for the algorithms in this section and the next.

A factor of N improvement in computational speed is not necessarily implied.
As a rough estimate, we might imagine that the calculation of each component of
the gradient takes about as long as evaluating the function itself. In that case there
will be of order N 2 equivalent function evaluations both with and without gradient
information. Even if the advantage is not of order N , however, it is nevertheless
quite substantial: (i) Each calculated component of the gradient will typically save
not just one function evaluation, but a number of them, equivalent to, say, a whole
line minimization. (ii) There is often a high degree of redundancy in the formulas
for the various components of a function’s gradient; when this is so, especially when
there is also redundancy with the calculation of the function, then the calculation of
the gradient may cost significantly less than N function evaluations.

A common beginner’s error is to assume that any reasonable way of incorporating
gradient information should be about as good as any other. This line of thought leads
to the following not very good algorithm, the steepest descent method:

Steepest Descent: Start at a point P0. As many times
as needed, move from point Pi to the point Pi+1 by
minimizing along the line from Pi in the direction of
the local downhill gradient −∇f(Pi).

The problem with the steepest descent method (which, incidentally, goes back
to Cauchy), is similar to the problem that was shown in Figure 10.5.1. The method
will perform many small steps in going down a long, narrow valley, even if the valley
is a perfect quadratic form. You might have hoped that, say in two dimensions,
your first step would take you to the valley floor, the second step directly down
the long axis; but remember that the new gradient at the minimum point of any
line minimization is perpendicular to the direction just traversed. Therefore, with
the steepest descent method, you must make a right angle turn, which does not, in
general, take you to the minimum. (See Figure 10.6.1.)

Just as in the discussion that led up to equation (10.5.5), we really want a way
of proceeding not down the new gradient, but rather in a direction that is somehow
constructed to be conjugate to the old gradient, and, insofar as possible, to all
previous directions traversed. Methods that accomplish this construction are called
conjugate gradient methods.

In §2.7 we discussed the conjugate gradient method as a technique for solving
linear algebraic equations by minimizing a quadratic form. That formalism can also
be applied to the problem of minimizing a function approximated by the quadratic
form (10.6.1). Recall that, starting with an arbitrary initial vector g 0 and letting
h0 = g0, the conjugate gradient method constructs two sequences of vectors from
the recurrence

gi+1 = gi − λiA · hi hi+1 = gi+1 + γihi i = 0, 1, 2, . . . (10.6.2)
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(a)

(b)

Figure 10.6.1. (a) Steepest descent method in a long, narrow “valley.” While more efficient than the
strategy of Figure 10.5.1, steepest descent is nonetheless an inefficient strategy, taking many steps to
reach the valley floor. (b) Magnified view of one step: A step starts off in the local gradient direction,
perpendicular to the contour lines, and traverses a straight line until a local minimum is reached, where
the traverse is parallel to the local contour lines.

The vectors satisfy the orthogonality and conjugacy conditions

gi · gj = 0 hi · A · hj = 0 gi · hj = 0 j < i (10.6.3)

The scalars λi and γi are given by

λi =
gi · gi

hi · A · hi
=

gi · hi

hi · A · hi
(10.6.4)

γi =
gi+1 · gi+1

gi · gi

(10.6.5)

Equations (10.6.2)–(10.6.5) are simply equations (2.7.32)–(2.7.35) for a symmetric
A in a new notation. (A self-contained derivation of these results in the context of
function minimization is given by Polak [1].)

Now suppose that we knew the Hessian matrix A in equation (10.6.1). Then
we could use the construction (10.6.2) to find successively conjugate directions h i

along which to line-minimize. After N such, we would efficiently have arrived at
the minimum of the quadratic form. But we don’t know A.

Here is a remarkable theorem to save the day: Suppose we happen to have
gi = −∇f(Pi), for some point Pi, where f is of the form (10.6.1). Suppose that we
proceed from Pi along the direction hi to the local minimum of f located at some
point Pi+1 and then set gi+1 = −∇f(Pi+1). Then, this gi+1 is the same vector
as would have been constructed by equation (10.6.2). (And we have constructed
it without knowledge of A!)

Proof: By equation (10.5.3), g i = −A · Pi + b, and

gi+1 = −A · (Pi + λhi) + b = gi − λA · hi (10.6.6)
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with λ chosen to take us to the line minimum. But at the line minimum h i · ∇f =
−hi · gi+1 = 0. This latter condition is easily combined with (10.6.6) to solve for
λ. The result is exactly the expression (10.6.4). But with this value of λ, (10.6.6)
is the same as (10.6.2), q.e.d.

We have, then, the basis of an algorithm that requires neither knowledge of the
Hessian matrix A, nor even the storage necessary to store such a matrix. A sequence
of directions hi is constructed, using only line minimizations, evaluations of the
gradient vector, and an auxiliary vector to store the latest in the sequence of g’s.

The algorithm described so far is the original Fletcher-Reeves version of the
conjugate gradient algorithm. Later, Polak and Ribiere introduced one tiny, but
sometimes significant, change. They proposed using the form

γi =
(gi+1 − gi) · gi+1

gi · gi

(10.6.7)

instead of equation (10.6.5). “Wait,” you say, “aren’t they equal by the orthogonality
conditions (10.6.3)?” They are equal for exact quadratic forms. In the real world,
however, your function is not exactly a quadratic form. Arriving at the supposed
minimum of the quadratic form, you may still need to proceed for another set of
iterations. There is some evidence [2] that the Polak-Ribiere formula accomplishes
the transition to further iterations more gracefully: When it runs out of steam, it
tends to reset h to be down the local gradient, which is equivalent to beginning the
conjugate-gradient procedure anew.

The following routine implements the Polak-Ribiere variant, which we recom-
mend; but changing one program line, as shown, will give you Fletcher-Reeves. The
routine presumes the existence of a function func(p), where p(1:n) is a vector of
length n, and also presumes the existence of a subroutine dfunc(p,df) that returns
the vector gradient df(1:n) evaluated at the input point p.

The routine calls linmin to do the line minimizations. As already discussed,
you may wish to use a modified version of linmin that uses dbrent instead of
brent, i.e., that uses the gradient in doing the line minimizations. See note below.

SUBROUTINE frprmn(p,n,ftol,iter,fret)
INTEGER iter,n,NMAX,ITMAX
REAL fret,ftol,p(n),EPS,func
EXTERNAL func
PARAMETER (NMAX=50,ITMAX=200,EPS=1.e-10)

C USES dfunc,func,linmin
Given a starting point p that is a vector of length n, Fletcher-Reeves-Polak-Ribiere minimiza-
tion is performed on a function func, using its gradient as calculated by a routine dfunc.
The convergence tolerance on the function value is input as ftol. Returned quantities are
p (the location of the minimum), iter (the number of iterations that were performed),
and fret (the minimum value of the function). The routine linmin is called to perform
line minimizations.
Parameters: NMAX is the maximum anticipated value of n; ITMAX is the maximum allowed
number of iterations; EPS is a small number to rectify special case of converging to exactly
zero function value.

INTEGER its,j
REAL dgg,fp,gam,gg,g(NMAX),h(NMAX),xi(NMAX)
fp=func(p) Initializations.
call dfunc(p,xi)
do 11 j=1,n

g(j)=-xi(j)
h(j)=g(j)
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xi(j)=h(j)
enddo 11

do 14 its=1,ITMAX Loop over iterations.
iter=its
call linmin(p,xi,n,fret) Next statement is the normal return:
if(2.*abs(fret-fp).le.ftol*(abs(fret)+abs(fp)+EPS))return
fp=fret
call dfunc(p,xi)
gg=0.
dgg=0.
do 12 j=1,n

gg=gg+g(j)**2
C dgg=dgg+xi(j)**2 This statement for Fletcher-Reeves.

dgg=dgg+(xi(j)+g(j))*xi(j) This statement for Polak-Ribiere.
enddo 12

if(gg.eq.0.)return Unlikely. If gradient is exactly zero then we are al-
ready done.gam=dgg/gg

do 13 j=1,n
g(j)=-xi(j)
h(j)=g(j)+gam*h(j)
xi(j)=h(j)

enddo 13

enddo 14

pause ’frprmn maximum iterations exceeded’
return
END

Note on Line Minimization Using Derivatives

Kindly reread the last part of §10.5. We here want to do the same thing, but
using derivative information in performing the line minimization.

Rather than reprint the whole routine linmin just to show one modified
statement, let us just tell you what the change is: The statement

fret=brent(ax,xx,bx,f1dim,tol,xmin)

should be replaced by

fret=dbrent(ax,xx,bx,f1dim,df1dim,tol,xmin)

You must also include the following function, which is analogous to f1dim as
discussed in §10.5. And remember, your function must be named func, and its
gradient calculation must be named dfunc.

FUNCTION df1dim(x)
INTEGER NMAX
REAL df1dim,x
PARAMETER (NMAX=50)

C USES dfunc
INTEGER j,ncom
REAL df(NMAX),pcom(NMAX),xicom(NMAX),xt(NMAX)
COMMON /f1com/ pcom,xicom,ncom
do 11 j=1,ncom

xt(j)=pcom(j)+x*xicom(j)
enddo 11

call dfunc(xt,df)
df1dim=0.
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do 12 j=1,ncom
df1dim=df1dim+df(j)*xicom(j)

enddo 12

return
END

CITED REFERENCES AND FURTHER READING:
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Jacobs, D.A.H. (ed.) 1977, The State of the Art in Numerical Analysis (London: Academic Press),
Chapter III.1.7 (by K.W. Brodlie). [2]

Stoer, J., and Bulirsch, R. 1980, Introduction to Numerical Analysis (New York: Springer-Verlag),
§8.7.

10.7 Variable Metric Methods in
Multidimensions

The goal of variable metric methods, which are sometimes called quasi-Newton
methods, is not different from the goal of conjugate gradient methods: to accumulate
information from successive line minimizations so that N such line minimizations
lead to the exact minimum of a quadratic form in N dimensions. In that case, the
method will also be quadratically convergent for more general smooth functions.

Both variable metric and conjugate gradient methods require that you are able to
compute your function’s gradient, or first partial derivatives, at arbitrary points. The
variable metric approach differs from the conjugate gradient in the way that it stores
and updates the information that is accumulated. Instead of requiring intermediate
storage on the order of N , the number of dimensions, it requires a matrix of size
N × N . Generally, for any moderate N , this is an entirely trivial disadvantage.

On the other hand, there is not, as far as we know, any overwhelming advantage
that the variable metric methods hold over the conjugate gradient techniques, except
perhaps a historical one. Developed somewhat earlier, and more widely propagated,
the variable metric methods have by now developed a wider constituency of satisfied
users. Likewise, some fancier implementations of variable metric methods (going
beyond the scope of this book, see below) have been developed to a greater level of
sophistication on issues like the minimization of roundoff error, handling of special
conditions, and so on. We tend to use variable metric rather than conjugate gradient,
but we have no reason to urge this habit on you.

Variable metric methods come in two main flavors. One is the Davidon-Fletcher-
Powell (DFP) algorithm (sometimes referred to as simply Fletcher-Powell). The
other goes by the name Broyden-Fletcher-Goldfarb-Shanno (BFGS). The BFGS and
DFP schemes differ only in details of their roundoff error, convergence tolerances,
and similar “dirty” issues which are outside of our scope [1,2]. However, it has
become generally recognized that, empirically, the BFGS scheme is superior in these
details. We will implement BFGS in this section.

As before, we imagine that our arbitrary function f(x) can be locally approx-
imated by the quadratic form of equation (10.6.1). We don’t, however, have any


