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5.4 Complex Arithmetic

Since FORTRAN has the built-in data type COMPLEX, you can generally let the
compiler and intrinsic function library take care of complex arithmetic for you.
Generally, but not always. For a program with only a small number of complex
operations, you may want to code these yourself, in-line. Or, you may find that
your compiler is not up to snuff: It is disconcertingly common to encounter complex
operations that produce overflows or underflows when both the complex operands
and the complex result are perfectly representable. This occurs, we think, because
software companies assign inexperienced programmers to what they believe to be
the perfectly trivial task of implementing complex arithmetic.

Actually, complex arithmetic is not quite trivial. Addition and subtraction
are done in the obvious way, performing the operation separately on the real and
imaginary parts of the operands. Multiplication can also be done in the obvious way,
with 4 multiplications, one addition, and one subtraction,

(a + ib)(c + id) = (ac − bd) + i(bc + ad) (5.4.1)

(the addition before the i doesn’t count; it just separates the real and imaginary parts
notationally). But it is sometimes faster to multiply via

(a + ib)(c + id) = (ac − bd) + i[(a + b)(c + d) − ac − bd] (5.4.2)

which has only three multiplications (ac, bd, (a + b)(c + d)), plus two additions and
three subtractions. The total operations count is higher by two, but multiplication
is a slow operation on some machines.

While it is true that intermediate results in equations (5.4.1) and (5.4.2) can
overflow even when the final result is representable, this happens only when the final
answer is on the edge of representability. Not so for the complex modulus, if you
or your compiler are misguided enough to compute it as

|a + ib| =
√

a2 + b2 (bad!) (5.4.3)

whose intermediate result will overflow if either a or b is as large as the square
root of the largest representable number (e.g., 10 19 as compared to 1038). The right
way to do the calculation is

|a + ib| =
{ |a|√1 + (b/a)2 |a| ≥ |b|
|b|√1 + (a/b)2 |a| < |b| (5.4.4)

Complex division should use a similar trick to prevent avoidable overflows,
underflow, or loss of precision,

a + ib

c + id
=




[a + b(d/c)] + i[b − a(d/c)]
c + d(d/c)

|c| ≥ |d|
[a(c/d) + b] + i[b(c/d) − a]

c(c/d) + d
|c| < |d|

(5.4.5)
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Of course you should calculate repeated subexpressions, like c/d or d/c, only once.
Complex square root is even more complicated, since we must both guard

intermediate results, and also enforce a chosen branch cut (here taken to be the
negative real axis). To take the square root of c + id, first compute

w ≡




0 c = d = 0
√
|c|

√
1 +

√
1 + (d/c)2

2
|c| ≥ |d|

√
|d|

√
|c/d| + √

1 + (c/d)2

2
|c| < |d|

(5.4.6)

Then the answer is

√
c + id =




0 w = 0

w + i

(
d

2w

)
w �= 0, c ≥ 0

|d|
2w

+ iw w �= 0, c < 0, d ≥ 0

|d|
2w

− iw w �= 0, c < 0, d < 0

(5.4.7)
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5.5 Recurrence Relations and Clenshaw’s
Recurrence Formula

Many useful functions satisfy recurrence relations, e.g.,

(n + 1)Pn+1(x) = (2n + 1)xPn(x) − nPn−1(x) (5.5.1)

Jn+1(x) =
2n

x
Jn(x) − Jn−1(x) (5.5.2)

nEn+1(x) = e−x − xEn(x) (5.5.3)

cosnθ = 2 cos θ cos(n − 1)θ − cos(n − 2)θ (5.5.4)

sin nθ = 2 cos θ sin(n − 1)θ − sin(n − 2)θ (5.5.5)

where the first three functions are Legendre polynomials, Bessel functions of the first
kind, and exponential integrals, respectively. (For notation see [1].) These relations


