5.4 Complex Arithmetic

Since FORTRAN has the built-in data type COMPLEX, you can generally let the compiler and intrinsic function library take care of complex arithmetic for you. Generally, but not always. For a program with only a small number of complex operations, you may want to code these yourself, in-line. Or, you may find that your compiler is not up to snuff: It is disconcertingly common to encounter complex operations that produce overflows or underflows when both the complex operands and the complex result are perfectly representable. This occurs, we think, because software companies assign inexperienced programmers to what they believe to be the perfectly trivial task of implementing complex arithmetic.

Actually, complex arithmetic is not quite trivial. Addition and subtraction are done in the obvious way, performing the operation separately on the real and imaginary parts of the operands. Multiplication can also be done in the obvious way, with 4 multiplications, one addition, and one subtraction,

$$(a+ib)(c+id) = (ac-bd) + i(bc+ad)$$
(5.4.1)

(the addition before the *i* doesn't count; it just separates the real and imaginary parts notationally). But it is sometimes faster to multiply via

$$(a+ib)(c+id) = (ac-bd) + i[(a+b)(c+d) - ac - bd]$$
(5.4.2)

which has only three multiplications (ac, bd, (a + b)(c + d)), plus two additions and three subtractions. The total operations count is higher by two, but multiplication is a slow operation on some machines.

While it is true that intermediate results in equations (5.4.1) and (5.4.2) can overflow even when the final result is representable, this happens only when the final answer is on the edge of representability. Not so for the complex modulus, if you or your compiler are misguided enough to compute it as

$$|a+ib| = \sqrt{a^2 + b^2}$$
 (bad!) (5.4.3)

whose intermediate result will overflow if either a or b is as large as the square root of the largest representable number (e.g., 10^{19} as compared to 10^{38}). The right way to do the calculation is

$$|a+ib| = \begin{cases} |a|\sqrt{1+(b/a)^2} & |a| \ge |b|\\ |b|\sqrt{1+(a/b)^2} & |a| < |b| \end{cases}$$
(5.4.4)

Complex division should use a similar trick to prevent avoidable overflows, underflow, or loss of precision,

$$\frac{a+ib}{c+id} = \begin{cases} \frac{[a+b(d/c)]+i[b-a(d/c)]}{c+d(d/c)} & |c| \ge |d|\\ \frac{[a(c/d)+b]+i[b(c/d)-a]}{c(c/d)+d} & |c| < |d| \end{cases}$$
(5.4.5)

Copyright (C) 1986-1992 by Cambridge University Press. Programs Copyright (C) 1986-1992 by Numerical Recipes Software. Permission is granted for internet users to make one paper copy for their own personal use. Further reproduction, or any copying of machine-readable files (including this one) to any server computer, is strictly prohibited. To order Numerical Recipes books or CDROMs, visit website http://www.nr.com or call 1-800-872-7423 (North America only), or send email to directcustserv@cambridge.org (outside North America). Sample page from NUMERICAL RECIPES IN FORTRAN 77: THE ART OF Copyright (C) 1986-1992 by Cambridge University Press. Programs Convrided Statement of the second statement of th

SCIENTIFIC COMPUTING (ISBN 0-521-43064-X)

Of course you should calculate repeated subexpressions, like c/d or d/c, only once.

Complex square root is even more complicated, since we must both guard intermediate results, and also enforce a chosen branch cut (here taken to be the negative real axis). To take the square root of c + id, first compute

$$w \equiv \begin{cases} 0 & c = d = 0\\ \sqrt{|c|} \sqrt{\frac{1 + \sqrt{1 + (d/c)^2}}{2}} & |c| \ge |d|\\ \sqrt{|d|} \sqrt{\frac{|c/d| + \sqrt{1 + (c/d)^2}}{2}} & |c| < |d| \end{cases}$$
(5.4.6)

Then the answer is

$$\sqrt{c+id} = \begin{cases} 0 & w = 0\\ w+i\left(\frac{d}{2w}\right) & w \neq 0, c \ge 0\\ \frac{|d|}{2w} + iw & w \neq 0, c < 0, d \ge 0\\ \frac{|d|}{2w} - iw & w \neq 0, c < 0, d < 0 \end{cases}$$
(5.4.7)

CITED REFERENCES AND FURTHER READING:

 Midy, P., and Yakovlev, Y. 1991, Mathematics and Computers in Simulation, vol. 33, pp. 33–49.
 Knuth, D.E. 1981, Seminumerical Algorithms, 2nd ed., vol. 2 of The Art of Computer Programming (Reading, MA: Addison-Wesley) [see solutions to exercises 4.2.1.16 and 4.6.4.41].

5.5 Recurrence Relations and Clenshaw's Recurrence Formula

Many useful functions satisfy recurrence relations, e.g.,

$$(n+1)P_{n+1}(x) = (2n+1)xP_n(x) - nP_{n-1}(x)$$
(5.5.1)

$$J_{n+1}(x) = \frac{2n}{x} J_n(x) - J_{n-1}(x)$$
(5.5.2)

$$nE_{n+1}(x) = e^{-x} - xE_n(x)$$
(5.5.3)

$$\cos n\theta = 2\cos\theta\cos(n-1)\theta - \cos(n-2)\theta \tag{5.5.4}$$

$$\sin n\theta = 2\cos\theta\sin(n-1)\theta - \sin(n-2)\theta \tag{5.5.5}$$

where the first three functions are Legendre polynomials, Bessel functions of the first kind, and exponential integrals, respectively. (For notation see [1].) These relations

Copyright (Č) 1986-1992 by Cambridge University Press. Programs Copyright (C) 1986-1992 by Numerical Recipes Software. Permission is granted for internet users to make one paper copy for their own personal use. Further reproduction, or any copying of machine-readable files (including this one) to any server computer, is strictly prohibited. To order Numerical Recipes books or CDROMs, visit website http://www.nr.com or call 1-800-872-7423 (North America only), or send email to directcustserv@cambridge.org (outside North America). Sample page from NUMERICAL RECIPES IN FORTRAN 77: THE ART OF Copyright (C) 1986-1992 by Cambridge University Press. Programs Convrided Conversion Press. Programs Converses Programs Con SCIENTIFIC COMPUTING (ISBN 0-521-43064-X)