As for references on this subject, the one to turn to first is Knuth [1]. Then try [2]. Only a few of the standard books on numerical methods $[3-4]$ treat topics relating to random numbers.

CITED REFERENCES AND FURTHER READING:

Knuth, D.E. 1981, Seminumerical Algorithms, 2nd ed., vol. 2 of The Art of Computer Programming (Reading, MA: Addison-Wesley), Chapter 3, especially §3.5. [1]
Bratley, P., Fox, B.L., and Schrage, E.L. 1983, A Guide to Simulation (New York: SpringerVerlag). [2]
Dahlquist, G., and Bjorck, A. 1974, Numerical Methods (Englewood Cliffs, NJ: Prentice-Hall), Chapter 11. [3]
Forsythe, G.E., Malcolm, M.A., and Moler, C.B. 1977, Computer Methods for Mathematical Computations (Englewood Cliffs, NJ: Prentice-Hall), Chapter 10. [4]

7.1 Uniform Deviates

Uniform deviates are just random numbers that lie within a specified range (typically 0 to 1), with any one number in the range just as likely as any other. They are, in other words, what you probably think "random numbers" are. However, we want to distinguish uniform deviates from other sorts of random numbers, for example numbers drawn from a normal (Gaussian) distribution of specified mean and standard deviation. These other sorts of deviates are almost always generated by performing appropriate operations on one or more uniform deviates, as we will see in subsequent sections. So, a reliable source of random uniform deviates, the subject of this section, is an essential building block for any sort of stochastic modeling or Monte Carlo computer work.

System-Supplied Random Number Generators

Your computer very likely has lurking within it a library routine which is called a "random number generator." That routine typically has an unforgettable name like "ran," and a calling sequence like

$$
x=r a n(\text { iseed }) \quad \text { sets } x \text { to the next random number and updates iseed }
$$

You initialize iseed to a (usually) arbitrary value before the first call to ran. Each initializing value will typically return a different subsequent random sequence, or at least a different subsequence of some one enormously long sequence. The same initializing value of iseed will always return the same random sequence, however.

Now our first, and perhaps most important, lesson in this chapter is: Be very, very suspicious of a system-supplied ran that resembles the one just described. If all scientific papers whose results are in doubt because of bad rans were to disappear from library shelves, there would be a gap on each shelf about as big as your fist. System-supplied rans are almost always linear congruential generators, which
generate a sequence of integers $I_{1}, I_{2}, I_{3}, \ldots$, each between 0 and $m-1$ (a large number) by the recurrence relation

$$
\begin{equation*}
I_{j+1}=a I_{j}+c \quad(\bmod m) \tag{7.1.1}
\end{equation*}
$$

Here m is called the modulus, and a and c are positive integers called the multiplier and the increment, respectively. The recurrence (7.1.1) will eventually repeat itself, with a period that is obviously no greater than m. If m, a, and c are properly chosen, then the period will be of maximal length, i.e., of length m. In that case, all possible integers between 0 and $m-1$ occur at some point, so any initial "seed" choice of I_{0} is as good as any other: The sequence just takes off from that point. The real number between 0 and 1 which is returned is generally I_{j+1} / m, so that it is strictly less than 1 , but occasionally (once in m calls) exactly equal to zero. iseed is set to I_{j+1} (or some encoding of it), so that it can be used on the next call to generate I_{j+2}, and so on.

The linear congruential method has the advantage of being very fast, requiring only a few operations per call, hence its almost universal use. It has the disadvantage that it is not free of sequential correlation on successive calls. If k random numbers at a time are used to plot points in k dimensional space (with each coordinate between 0 and 1), then the points will not tend to "fill up" the k-dimensional space, but rather will lie on $(k-1)$-dimensional "planes." There will be at most about $m^{1 / k}$ such planes. If the constants m, a, and c are not very carefully chosen, there will be many fewer than that. The number m is usually close to the machine's largest representable integer, e.g., $\sim 2^{32}$. So, for example, the number of planes on which triples of points lie in three-dimensional space is usually no greater than about the cube root of 2^{32}, about 1600 . You might well be focusing attention on a physical process that occurs in a small fraction of the total volume, so that the discreteness of the planes can be very pronounced.

Even worse, you might be using a ran whose choices of m, a, and c have been botched. One infamous such routine, RANDU, with $a=65539$ and $m=2^{31}$, was widespread on IBM mainframe computers for many years, and widely copied onto other systems [1]. One of us recalls producing a "random" plot with only 11 planes, and being told by his computer center's programming consultant that he had misused the random number generator: "We guarantee that each number is random individually, but we don't guarantee that more than one of them is random." Figure that out.

Correlation in k-space is not the only weakness of linear congruential generators. Such generators often have their low-order (least significant) bits much less random than their high-order bits. If you want to generate a random integer between 1 and 10 , you should always do it using high-order bits, as in

$$
j=1+\text { int }(10 . * r a n(\text { iseed }))
$$

and never by anything resembling
(which uses lower-order bits). Similarly you should never try to take apart a "ran" number into several supposedly random pieces. Instead use separate calls for every piece.

Portable Random Number Generators

Park and Miller [1] have surveyed a large number of random number generators that have been used over the last 30 years or more. Along with a good theoretical review, they present an anecdotal sampling of a number of inadequate generators that have come into widespread use. The historical record is nothing if not appalling.

There is good evidence, both theoretical and empirical, that the simple multiplicative congruential algorithm

$$
\begin{equation*}
I_{j+1}=a I_{j} \quad(\bmod m) \tag{7.1.2}
\end{equation*}
$$

can be as good as any of the more general linear congruential generators that have $c \neq 0$ (equation 7.1.1) - if the multiplier a and modulus m are chosen exquisitely carefully. Park and Miller propose a "Minimal Standard" generator based on the choices

$$
\begin{equation*}
a=7^{5}=16807 \quad m=2^{31}-1=2147483647 \tag{7.1.3}
\end{equation*}
$$

First proposed by Lewis, Goodman, and Miller in 1969, this generator has in subsequent years passed all new theoretical tests, and (perhaps more importantly) has accumulated a large amount of successful use. Park and Miller do not claim that the generator is "perfect" (we will see below that it is not), but only that it is a good minimal standard against which other generators should be judged.

It is not possible to implement equations (7.1.2) and (7.1.3) directly in a high-level language, since the product of a and $m-1$ exceeds the maximum value for a 32 -bit integer. Assembly language implementation using a 64 -bit product register is straightforward, but not portable from machine to machine. A trick due to Schrage $[2,3]$ for multiplying two 32 -bit integers modulo a 32-bit constant, without using any intermediates larger than 32 bits (including a sign bit) is therefore extremely interesting: It allows the Minimal Standard generator to be implemented in essentially any programming language on essentially any machine.

Schrage's algorithm is based on an approximate factorization of m,

$$
\begin{equation*}
m=a q+r, \quad \text { i.e., } \quad q=[m / a], r=m \bmod a \tag{7.1.4}
\end{equation*}
$$

with square brackets denoting integer part. If r is small, specifically $r<q$, and $0<z<m-1$, it can be shown that both $a(z \bmod q)$ and $r[z / q]$ lie in the range $0, \ldots, m-1$, and that

$$
a z \bmod m= \begin{cases}a(z \bmod q)-r[z / q] & \text { if it is } \geq 0 \tag{7.1.5}\\ a(z \bmod q)-r[z / q]+m & \text { otherwise }\end{cases}
$$

The application of Schrage's algorithm to the constants (7.1.3) uses the values $q=127773$ and $r=2836$.

Here is an implementation of the Minimal Standard generator:

```
FUNCTION ranO(idum)
INTEGER idum,IA,IM,IQ,IR,MASK
REAL ranO,AM
PARAMETER (IA=16807,IM=2147483647,AM=1./IM,
        IQ=127773,IR=2836,MASK=123459876)
    "Minimal" random number generator of Park and Miller. Returns a uniform random deviate
    between 0.0 and 1.0. Set or reset idum to any integer value (except the unlikely value MASK)
    to initialize the sequence; idum must not be altered between calls for successive deviates
    in a sequence.
INTEGER k
idum=ieor(idum,MASK) XORing with MASK allows use of zero and other simple
k=idum/IQ
idum=IA*(idum-k*IQ)-IR*k
if (idum.lt.0) idum=idum+IM
ran0=AM*idum
idum=ieor(idum,MASK)
return
END
```

The period of ran0 is $2^{31}-2 \approx 2.1 \times 10^{9}$. A peculiarity of generators of the form (7.1.2) is that the value 0 must never be allowed as the initial seed - it perpetuates itself - and it never occurs for any nonzero initial seed. Experience has shown that users always manage to call random number generators with the seed idum $=0$. That is why ran0 performs its exclusive-or with an arbitrary constant both on entry and exit. If you are the first user in history to be proof against human error, you can remove the two lines with the ieor function.

Park and Miller discuss two other multipliers a that can be used with the same $m=2^{31}-1$. These are $a=48271$ (with $q=44488$ and $r=3399$) and $a=69621$ (with $q=30845$ and $r=23902$). These can be substituted in the routine ran0 if desired; they may be slightly superior to Lewis et al.'s longer-tested values. No values other than these should be used.

The routine ran0 is a Minimal Standard, satisfactory for the majority of applications, but we do not recommend it as the final word on random number generators. Our reason is precisely the simplicity of the Minimal Standard. It is not hard to think of situations where successive random numbers might be used in a way that accidentally conflicts with the generation algorithm. For example, since successive numbers differ by a multiple of only 1.6×10^{4} out of a modulus of more than 2×10^{9}, very small random numbers will tend to be followed by smaller than average values. One time in 10^{6}, for example, there will be a value $<10^{-6}$ returned (as there should be), but this will always be followed by a value less than about 0.0168 . One can easily think of applications involving rare events where this property would lead to wrong results.

There are other, more subtle, serial correlations present in ran0. For example, if successive points $\left(I_{i}, I_{i+1}\right)$ are binned into a two-dimensional plane for $i=$ $1,2, \ldots, N$, then the resulting distribution fails the χ^{2} test when N is greater than a few $\times 10^{7}$, much less than the period $m-2$. Since low-order serial correlations have historically been such a bugaboo, and since there is a very simple way to remove them, we think that it is prudent to do so.

The following routine, ran1, uses the Minimal Standard for its random value, but it shuffles the output to remove low-order serial correlations. A random deviate derived from the j th value in the sequence, I_{j}, is output not on the j th call, but rather on a randomized later call, $j+32$ on average. The shuffling algorithm is due to Bays and Durham as described in Knuth [4], and is illustrated in Figure 7.1.1.

```
FUNCTION ran1(idum)
INTEGER idum,IA,IM,IQ,IR,NTAB,NDIV
REAL ran1,AM,EPS,RNMX
PARAMETER (IA=16807,IM=2147483647,AM=1./IM,IQ=127773,IR=2836,
    NTAB=32,NDIV=1+(IM-1)/NTAB,EPS=1.2e-7,RNMX=1.-EPS)
    "Minimal" random number generator of Park and Miller with Bays-Durham shuffle and
    added safeguards. Returns a uniform random deviate between 0.0 and 1.0 (exclusive of
    the endpoint values). Call with idum a negative integer to initialize; thereafter, do not
    alter idum between successive deviates in a sequence. RNMX should approximate the largest
    floating value that is less than 1.
INTEGER j,k,iv(NTAB),iy
SAVE iv,iy
DATA iv /NTAB*O/, iy /0/
if (idum.le.0.or.iy.eq.0) then Initialize.
    idum=max(-idum,1) Be sure to prevent idum = 0.
    do }11\textrm{j}=\textrm{NTAB}+8,1,-1\quad\mathrm{ Load the shuffle table (after }8\mathrm{ warm-ups).
            k=idum/IQ
            idum=IA*(idum-k*IQ)-IR*k
            if (idum.lt.0) idum=idum+IM
            if (j.le.NTAB) iv(j)=idum
    enddo }1
    iy=iv(1)
endif
k=idum/IQ
idum=IA*(idum-k*IQ)-IR*k
if (idum.lt.0) idum=idum}+I
j=1+iy/NDIV
iy=iv(j)
iv(j)=idum
ran1=min(AM*iy, RNMX)
return
END
Start here when not initializing.
Compute idum=mod(IA*idum,IM) without overflows by
Schrage's method.
Will be in the range 1:NTAB.
Output previously stored value and refill the shuffle ta-
```

The routine ran1 passes those statistical tests that ran0 is known to fail. In fact, we do not know of any statistical test that ran1 fails to pass, except when the number of calls starts to become on the order of the period m, say $>10^{8} \approx m / 20$.

For situations when even longer random sequences are needed, L'Ecuyer [6] has given a good way of combining two different sequences with different periods so as to obtain a new sequence whose period is the least common multiple of the two periods. The basic idea is simply to add the two sequences, modulo the modulus of either of them (call it m). A trick to avoid an intermediate value that overflows the integer wordsize is to subtract rather than add, and then add back the constant $m-1$ if the result is ≤ 0, so as to wrap around into the desired interval $0, \ldots, m-1$.

Notice that it is not necessary that this wrapped subtraction be able to reach all values $0, \ldots, m-1$ from every value of the first sequence. Consider the absurd extreme case where the value subtracted was only between 1 and 10: The resulting sequence would still be no less random than the first sequence by itself. As a practical matter it is only necessary that the second sequence have a range covering substantially all of the range of the first. L'Ecuyer recommends the use of the two generators $m_{1}=2147483563$ (with $a_{1}=40014, q_{1}=53668, r_{1}=12211$) and $m_{2}=2147483399$ (with $a_{2}=40692, q_{2}=52774, r_{2}=3791$). Both moduli are slightly less than 2^{31}. The periods $m_{1}-1=2 \times 3 \times 7 \times 631 \times 81031$ and $m_{2}-1=2 \times 19 \times 31 \times 1019 \times 1789$ share only the factor 2 , so the period of the combined generator is $\approx 2.3 \times 10^{18}$. For present computers, period exhaustion is a practical impossibility.

Figure 7.1.1. Shuffling procedure used in ran1 to break up sequential correlations in the Minimal Standard generator. Circled numbers indicate the sequence of events: On each call, the random number in iy is used to choose a random element in the array iv. That element becomes the output random number, and also is the next iy. Its spot in iv is refilled from the Minimal Standard routine.

Combining the two generators breaks up serial correlations to a considerable extent. We nevertheless recommend the additional shuffle that is implemented in the following routine, ran2. We think that, within the limits of its floating-point precision, ran2 provides perfect random numbers; a practical definition of "perfect" is that we will pay $\$ 1000$ to the first reader who convinces us otherwise (by finding a statistical test that ran2 fails in a nontrivial way, excluding the ordinary limitations of a machine's floating-point representation).

```
FUNCTION ran2(idum)
INTEGER idum,IM1,IM2,IMM1,IA1,IA2,IQ1,IQ2,IR1,IR2,NTAB,NDIV
REAL ran2,AM,EPS,RNMX
PARAMETER (IM1=2147483563,IM2=2147483399,AM=1./IM1,IMM1=IM1-1,
    IA1 = 40014,IA2 = 40692,IQ1=53668,IQ2=52774,IR1=12211,
    IR2=3791,NTAB=32,NDIV=1+IMM1/NTAB,EPS=1.2e-7,RNMX=1.-EPS)
    Long period ( }>2\times1\mp@subsup{0}{}{18}\mathrm{ ) random number generator of L'Ecuyer with Bays-Durham shuffle
    and added safeguards. Returns a uniform random deviate between 0.0 and 1.0 (exclusive
    of the endpoint values). Call with idum a negative integer to initialize; thereafter, do not
    alter idum between successive deviates in a sequence. RNMX should approximate the largest
    floating value that is less than 1.
INTEGER idum2,j,k,iv(NTAB),iy
SAVE iv,iy,idum2
DATA idum2/123456789/, iv/NTAB*O/, iy/0/
if (idum.le.0) then Initialize.
    idum=max (-idum,1) Be sure to prevent idum =0.
    idum2=idum
    do }11\textrm{j}=\textrm{NTAB+8,1,-1 Load the shuffle table (after 8 warm-ups).
        k=idum/IQ1
```

```
        idum=IA1*(idum-k*IQ1)-k*IR1
        if (idum.lt.0) idum=idum+IM1
        if (j.le.NTAB) iv(j)=idum
    enddo }1
    iy=iv(1)
endif
k=idum/IQ1 Start here when not initializing.
idum=IA1*(idum-k*IQ1)-k*IR1 Compute idum=mod(IA1*idum,IM1) without over-
if (idum.lt.0) idum=idum+IM1 flows by Schrage's method.
k=idum2/IQ2
idum2=IA2*(idum2-k*IQ2)-k*IR2
if (idum2.lt.0) idum2=idum2+IM2
j=1+iy/NDIV
iy=iv(j)-idum2
iv(j)=idum
if(iy.lt.1)iy=iy+IMM1
ran2=min(AM*iy,RNMX)
return
END
```

L'Ecuyer [6] lists additional short generators that can be combined into longer ones, including generators that can be implemented in 16-bit integer arithmetic.

Finally, we give you Knuth's suggestion [4] for a portable routine, which we have translated to the present conventions as ran3. This is not based on the linear congruential method at all, but rather on a subtractive method (see also [5]). One might hope that its weaknesses, if any, are therefore of a highly different character from the weaknesses, if any, of ran1 above. If you ever suspect trouble with one routine, it is a good idea to try the other in the same application. ran3 has one nice feature: if your machine is poor on integer arithmetic (i.e., is limited to 16-bit integers), substitution of the three "commented" lines for the ones directly preceding them will render the routine entirely floating-point.

```
FUNCTION ran3(idum)
    Returns a uniform random deviate between 0.0 and 1.0. Set idum to any negative value
    to initialize or reinitialize the sequence.
INTEGER idum
INTEGER MBIG,MSEED,MZ
C REAL MBIG,MSEED,MZ
REAL ran3,FAC
PARAMETER (MBIG=1000000000,MSEED=161803398,MZ=0,FAC=1./MBIG)
C PARAMETER (MBIG=4000000.,MSEED=1618033.,MZ=0.,FAC=1./MBIG)
    According to Knuth, any large mbig, and any smaller (but still large) mseed can be sub-
    stituted for the above values.
INTEGER i,iff,ii,inext,inextp,k
INTEGER mj,mk,ma(55)
The value 55 is special and should not be modified; see
C REAL mj,mk,ma(55)
                        Knuth.
SAVE iff,inext,inextp,ma
DATA iff /0/
if(idum.lt.0.or.iff.eq.0)then Initialization.
    iff=1
    mj=abs(MSEED-abs(idum))
    mj=mod(mj,MBIG)
        Initialize ma(55) using the seed idum and the large num-
        ber mseed.
    ma(55)=mj
    mk=1
    do }11\textrm{i}=1,54\mathrm{ Now initialize the rest of the table,
        ii=mod}(21*i,55) in a slightly random order
        ma(ii)=mk with numbers that are not especially random.
        mk=mj-mk
        if(mk.lt.MZ)mk=mk+MBIG
```

```
            mj=ma(ii)
    enddo }1
    do 13 k=1,4 We randomize them by "warming up the generator."
            do 12 i=1,55
                ma(i)=ma(i)-ma(1+mod (i+30,55))
                if(ma(i).lt.MZ)ma(i)=ma(i)+MBIG
            enddo }1
        enddo }1
        inext=0 Prepare indices for our first generated number.
        inextp=31
        idum=1
endif
inext=inext+1
if(inext.eq.56)inext=1
inextp=inextp+1
if(inextp.eq.56)inextp=1
mj=ma(inext)-ma(inextp)
if(mj.lt.MZ)mj=mj+MBIG
ma(inext)=mj
ran3=mj*FAC
return
END
```


Quick and Dirty Generators

One sometimes would like a "quick and dirty" generator to embed in a program, perhaps taking only one or two lines of code, just to somewhat randomize things. One might wish to process data from an experiment not always in exactly the same order, for example, so that the first output is more "typical" than might otherwise be the case.

For this kind of application, all we really need is a list of "good" choices for m, a, and c in equation (7.1.1). If we don't need a period longer than 10^{4} to 10^{6}, say, we can keep the value of $(m-1) a+c$ small enough to avoid overflows that would otherwise mandate the extra complexity of Schrage's method (above). We can thus easily embed in our programs

```
jran=mod(jran*ia+ic,im)
ran=float(jran)/float(im)
```

whenever we want a quick and dirty uniform deviate, or

```
jran=mod(jran*ia+ic,im)
j=jlo+((jhi-jlo+1)*jran)/im
```

whenever we want an integer between $j l o$ and jhi, inclusive. (In both cases jran was once initialized to any seed value between 0 and im-1.)

Be sure to remember, however, that when im is small, the k th root of it, which is the number of planes in k-space, is even smaller! So a quick and dirty generator should never be used to select points in k-space with $k>1$.

With these caveats, some "good" choices for the constants are given in the accompanying table. These constants (i) give a period of maximal length im, and, more important, (ii) pass Knuth's "spectral test" for dimensions $2,3,4,5$, and 6 . The increment ic is a prime, close to the value $\left(\frac{1}{2}-\frac{1}{6} \sqrt{3}\right) i m$; actually almost any value of ic that is relatively prime to im will do just as well, but there is some "lore" favoring this choice (see [4], p. 84).

Constants for Quick and Dirty Random Number Generators							
overflow at	im	ia	ic	overflow at	im	ia	ic
2^{20}	6075	106	1283		86436	1093	18257
					121500	1021	25673
2^{21}	7875	211	1663		259200	421	54773
				2^{27}			
2^{22}	7875	421	1663		117128	1277	24749
					121500	2041	25673
	6075	1366	1283		312500	741	66037
	6655	936	1399	2^{28}			
2^{23}	11979	430	2531		145800	3661	30809
					175000	2661	36979
	14406	967	3041		233280	1861	49297
	29282	419	6173		244944	1597	51749
	53125	171	11213	2^{29}			
2^{24}					139968	3877	29573
	12960	1741	2731		214326	3613	45289
	14000	1541	2957		714025	1366	150889
	21870	1291	4621	2^{30}			
	31104	625	6571		134456	8121	28411
	139968	205	29573		259200	7141	54773
2^{25}				2^{31}			
	29282	1255	6173		233280	9301	49297
	81000	421	17117		714025	4096	150889
	134456		28411	2^{32}			

An Even Quicker and Dirtier Generator

Many FORTRAN compilers can be abused in such a way that they will multiply two 32-bit integers ignoring any resulting overflow. In such cases, on many machines, the value returned is predictably the low-order 32 bits of the true 64 -bit product. (C compilers, incidentally, can do this without the requirement of abuse - it is guaranteed behavior for so-called unsigned long int integers. On VMS VAXes, the necessary FORTRAN command is FORTRAN/CHECK=NOOVERFLOW.) If we now choose $m=2^{32}$, the "mod" in equation (7.1.1) is free, and we have simply

$$
\begin{equation*}
I_{j+1}=a I_{j}+c \tag{7.1.6}
\end{equation*}
$$

Knuth suggests $a=1664525$ as a suitable multiplier for this value of m. H.W. Lewis has conducted extensive tests of this value of a with $c=1013904223$, which is a prime close to $(\sqrt{5}-2) m$. The resulting in-line generator (we will call it ranqd1) is simply
idum $=1664525 *$ idum +1013904223
This is about as good as any 32-bit linear congruential generator, entirely adequate for many uses. And, with only a single multiply and add, it is very fast.

To check whether your compiler and machine have the desired overflow properties, see if you can generate the following sequence of 32 -bit values (given here in hex): 00000000, 3C6EF35F, 47502932, D1CCF6E9, AAF95334, 6252E503, 9F2EC686, 57FE6C2D, A3D95FA8, 81FDBEE7, 94F0AF1A, CBF633B1.

If you need floating-point values instead of 32 -bit integers, and want to avoid a divide by floating-point 2^{32}, a dirty trick is to mask in an exponent that makes the value lie between 1 and 2 , then subtract 1.0. The resulting in-line generator (call it ranqd2) will look something like

```
INTEGER idum,itemp,jflone,jflmsk
REAL ftemp
EQUIVALENCE (itemp,ftemp)
DATA jflone /Z'3F800000'/, jflmsk /Z'007FFFFF'/
idum=1664525*idum+1013904223
itemp=ior(jflone,iand(jflmsk,idum))
ran=ftemp-1.0
```

The hex constants 3 F800000 and 007FFFFF are the appropriate ones for computers using the IEEE representation for 32 -bit floating-point numbers (e.g., IBM PCs and most UNIX workstations). For DEC VAXes, the correct hex constants are, respectively, 00004080 and FFFF007F. Notice that the IEEE mask results in the floating-point number being constructed out of the 23 low-order bits of the integer, which is not ideal. Also notice that your compiler may require a different notation for hex constants, e.g., x'3f800000', ' 3 F 800000 ' X , or even 16\#3F800000. (Your authors have tried very hard to make almost all of the material in this book machine and compiler independent - indeed, even programming language independent. This subsection is a rare aberration. Forgive us. Once in a great while the temptation to be really dirty is just irresistible.)

Relative Timings and Recommendations

Timings are inevitably machine dependent. Nevertheless the following table is indicative of the relative timings, for typical machines, of the various uniform generators discussed in this section, plus ran4 from $\S 7.5$. Smaller values in the table indicate faster generators. The generators ranqd1 and ranqd2 refer to the "quick and dirty" generators immediately above.

Generator	Relative Execution Time
ran0	$\equiv 1.0$
ran1	≈ 1.3
ran2	≈ 2.0
ran3	≈ 0.6
ranqd1	≈ 0.10
ranqd2	≈ 0.25
ran4	≈ 4.0

On balance, we recommend ran1 for general use. It is portable, based on Park and Miller's Minimal Standard generator with an additional shuffle, and has no known (to us) flaws other than period exhaustion.

If you are generating more than $100,000,000$ random numbers in a single calculation (that is, more than about 5\% of ran1's period), we recommend the use of ran2, with its much longer period.

Knuth's subtractive routine ran3 seems to be the timing winner among portable routines. Unfortunately the subtractive method is not so well studied, and not a standard. We like to keep ran3 in reserve for a "second opinion," substituting it when we suspect another generator of introducing unwanted correlations into a calculation.

The routine ran4 generates extremely good random deviates, and has some other nice properties, but it is slow. See $\S 7.5$ for discussion.

Finally, the quick and dirty in-line generators ranqd1 and ranqd2 are very fast, but they are machine dependent, nonportable, and at best only as good as a 32-bit linear congruential generator ever is - in our view not good enough in many situations. We would use these only in very special cases, where speed is critical.

CITED REFERENCES AND FURTHER READING:
Park, S.K., and Miller, K.W. 1988, Communications of the ACM, vol. 31, pp. 1192-1201. [1]
Schrage, L. 1979, ACM Transactions on Mathematical Software, vol. 5, pp. 132-138. [2]
Bratley, P., Fox, B.L., and Schrage, E.L. 1983, A Guide to Simulation (New York: SpringerVerlag). [3]
Knuth, D.E. 1981, Seminumerical Algorithms, 2nd ed., vol. 2 of The Art of Computer Programming (Reading, MA: Addison-Wesley), §§3.2-3.3. [4]
Kahaner, D., Moler, C., and Nash, S. 1989, Numerical Methods and Software (Englewood Cliffs, NJ: Prentice Hall), Chapter 10. [5]
L'Ecuyer, P. 1988, Communications of the ACM, vol. 31, pp. 742-774. [6]
Forsythe, G.E., Malcolm, M.A., and Moler, C.B. 1977, Computer Methods for Mathematical Computations (Englewood Cliffs, NJ: Prentice-Hall), Chapter 10.

7.2 Transformation Method: Exponential and Normal Deviates

In the previous section, we learned how to generate random deviates with a uniform probability distribution, so that the probability of generating a number between x and $x+d x$, denoted $p(x) d x$, is given by

$$
p(x) d x= \begin{cases}d x & 0<x<1 \tag{7.2.1}\\ 0 & \text { otherwise }\end{cases}
$$

The probability distribution $p(x)$ is of course normalized, so that

$$
\begin{equation*}
\int_{-\infty}^{\infty} p(x) d x=1 \tag{7.2.2}
\end{equation*}
$$

Now suppose that we generate a uniform deviate x and then take some prescribed function of it, $y(x)$. The probability distribution of y, denoted $p(y) d y$, is determined by the fundamental transformation law of probabilities, which is simply

$$
\begin{equation*}
|p(y) d y|=|p(x) d x| \tag{7.2.3}
\end{equation*}
$$

or

$$
\begin{equation*}
p(y)=p(x)\left|\frac{d x}{d y}\right| \tag{7.2.4}
\end{equation*}
$$

