
Summer school on cosmological numerical simulations
3rd week – MONDAY

Volker Springel

Max-Planck-Institute for
Astrophysics

Helmholtz School of Astrophysics
Potsdam, July/August 2006

Summer school on cosmological numerical simulations

The GADGET code: Usage, capabilities &
limitations, algorithmic aspects

Smoothed particle hydrodynamics as a tool to
model baryonic physics

Time integration methods,
semi-analytic simulations

Galaxy merger simulations, construction of
isolated galaxies, physics in mergers

Rounding and debugging issues, version
control systems, visualization of particle data

Tentative plan for lectures of the third week

Volker Springel

Helmholtz School of Astrophysics
Potsdam, July/August 2006

Monday

Tuesday

Wednesday

Thursday

Friday

The GADGET code: Usage, capabilities &
limitations, algorithmic aspects

Introduction to types of simulations possible with
GADGET

History and features of GADGET- II

Gravitational force calculation algorithms

Practical hints for the usage of GADGET- II

Parallelization algorithms and limits for the
scalability

MONDAY-Lecture of 3rd week

Volker Springel

Helmoltz Summer School on Computational Astrophysics
Potsdam, July/August 2006

Examples for
GADGET simulations

The multiphase-model allows stable disk galaxies even for very high gas surface densities

STABILITY OF DISKS AS A FUNCTION OF GAS FRACTION AND EQUATION OF STATE

In major-mergers
between two disk
galaxies, tidal
torques extract
angular momen-
tum from cold
gas, providing
fuel for nuclear
starbursts

TIME EVOLUTION OF A
PROGRADE MAJOR
MERGER

Simulating very high-mass resolution down to low redshift requires a
multi-resolution technique

ZOOMING IN ON HALOS OF INTEREST - RESIMULATION TECHNIQUE

Springel et al. (2001)

Parent simulation:
large-scale structure

Rerun with locally higher resolution:

achieve ~ 102 -103 increase in mass resolution

Internal structure of indivudal objects can be
studied with very high resolution

Resimulation with spatially
varying resolution

Springel, White,
Kauffmann,
Tormen (2000)

Lagrangian
simulations
allow very
high spatial
dynamic
range in 3D

ZOOM INTO A
CLUSTER

~ 20 million
particles within
virial radius of
cluster
~105 spatial
dynamic range

Adiabatic gasdynamics can be readily incorporated in zoom simulations

A SIMULATED CLUSTER WITH GAS

file:///home/volker/Talks/Schuelergruppe_2005/play_cluster.sh

Weak magnetic fields are ubiquitious in the universe

DEFLECTION MAP OF UHECR IN THE LOCAL UNIVERSE

Dolag, Grasso, Springel & Tkachev (2003):

Contrained Simulation of the Local Universe
ideal MHD, run with P-Gadget2

Simulations on scales of order 100 Mpc are the workhorses of
studies of large-scale structure formation

EVOLUTION OF STRUCTURE IN THE GAS DISTRIBUTION

Springel, Hernquist & White (2000)

file:///home/volker/Talks/VolkssternwarteBerlin_2006/play_fly.sh

Cosmological
hydrodynamical
simulations can
directly follow
galaxy formation

BARYONIC DENSITY
IN SIMULATIONS
WITH RADIATIVE
COOLING, STAR
FORMATION AND
FEEDBACK

Galactic winds reduce the star formation efficiency of low-mass galaxies

HOT BUBBLES IN THE IGM AROUND SMALL PRIMEVAL GALAXIES

Springel & Hernquist (2003)

Features and history of
GADGET

GADGET is a versatile TreeSPH N-body code for
cosmological applications

PRINCIPLE CHARACTERISTICS OF GADGET

Gravity solver based on a TREE or TreePM algorithm

Hydrodynamics is followed by means of SPH

Timesteps can be individual and adaptive

Code is parallelized with MPI for distributed memory
architectures

Code is written in C and is highly portable

A basic version of the code is publicly available

What is smoothed particle hydrodynamics?

DIFFERENT METHODS TO DISCRETIZE A FLUID

Eulerian Lagrangian

discretize space discretize mass

representation on a mesh
(volume elements)

representation by fluid elements
(particles)

resolutions adjusts
automatically to the flow

high accuracy (shock capturing), low
numerical viscosity

collapse

principle advantage: principle advantage:

GADGET has evolved over the years and is in a process of
continuous change

MAJOR EVENTS IN GADGET'S DEVELOPMENT

1997 first version, serial GRAPE code

1998 first tree code, first
 parallel MPI code, serial SPH

1999 large production runs on 512 processors
Cray T3E, SPH in parallel code

2000 Gadget-1.0 released to the public

2001 Gadget-1.1 released

2002 complete rewrite, first
 versions of Gadget-2

2003 TreePM finalized, code for
 Millennium Run written

2004 lots of physics
 added to code

2005 public version
 Gadget2 released

2006 lots of physics
added to code, Gadget3?

S-Gadget 1.0 P-Gadget 1.0

S-Gadget 1.1 P-Gadget 1.1

P-Gadget 2

P-Gadget 2

L-Gadget 2

P-Gadget 2

Gadget 2

Millennium run

major
rewrite

public version

51000 lines

18000 lines

10000 lines

public versions

12000 lines8000 lines

Gadget 2-asynchronous

Gadget 2-multidomain
BG / P-Gadget 3 P-Gadget 3

65000 lines 42000 lines

19000 lines

20000 lines

There is now a
collection of
different versions
of GADGET

THE FAMILY TREE OF
GADGET

We recently developed a largely new cosmological code: GADGET-II

NEW FEATURES OF GADGET-II

SPH neighbour search faster

New symplectic integration method

Code may be run optionally as a TreePM hybrid code

Higher speed of the tree algorithm

Conservative SPH formulation

Additional types of runs possible (e.g. 2D, hydrodynamics-only, long periodic boxes)

More physics

The new code is quite a bit better than the old version...

Less memory consumption for tree and particle storage (~100% saving)

Efficient and clean formation of star particles

Still fully standard C & standard MPI. The FFTW and GSL libraries are needed.

More output options, including HDF5

Fully consistent dynamic tree updates

Reduced communication overhead, better scalability, arbitrary number of cpus

Key feature for
Millenium Run

Built in parallel group finder

Physics in GADGET-II for simulations of galaxy formation

Thermal conduction

Radiative cooling, UV background (homogeneous)

Detailed chemical enrichment

Subresolution multiphase model for the ISM: Star formation and feedback

Magneto-hydrodynamics

Growth of supermassive black holes and AGN feedback

Hopefully additional in the future...

Phenomenological model for galactic winds

Non-thermal relativistic component (cosmic rays)

Bubble heating and feedback by AGN

Shock detection

Physical viscosity via Navier-Stokes equation

Why is GADGET written in C ?

SOME PROS AND CONS FOR DIFFERENT LANGUAGES

C
highly portable (ANSI standardized)
free, efficient, and reliable compilers on all
platforms
compact syntax, free format source code
powerful pointer arithmetic
dynamic memory allocation
powerful low-level bit operations
call by reference or call by value
easy to learn
direct access to all UNIX functionality
subset of C++
used a lot outside of physics (good for a
career outside research if needed)

no run-time library for automatic I/O error
checking
no array bound checks
easy to write code that will seg-fault
language is not really designed for
numerical work

Fortran
easy to learn
run-time library helps in tracking down I/O errors
language is efficient for numerical work, Fortran90
matrix arithmetic is convenient and fast
large body of legacy code available in physics
limited feature set and possibility to do array bound
checks help to avoid simple coding mistakes
allows implicit types and quick & dirty coding

compilers are often proprietary and buggy (small user
base)
easy to write code that is not well portable
wordy syntax, anachronistic restrictions on source code
format
static memory model (Fortran90 allows also dynamic
allocation)
dying language, not used a lot any more outside of
physics
error-prone treatment of global variables (common
blocks)
cumbersome interfaces to UNIX-libraries

C++

strong typing enforced
object oriented, includes features such as operator
overloading, inheritence, virtual functions and
classes, etc.
allows code encapsulation, supports writing reusable,
modular and extensible code
powerful standard template library

difficult to learn (numerous abstract
concepts and subtle syntax)
often lower performance in numerical
applications than C or Fortran

What do we simulate?

85%

15%

Dark Matter

Baryons

Ω= 0.73

Ω= 0.27

Λ

Cosmological
Constant
“Dark Energy”

0
Matter

Ωtot = 1
flat space-time

Simulations need to account for the full
cosmic matter-energy content

MATERIAL IN THE UNIVERSE

We assume that the only appreciable interaction of dark matter
particles is gravity

COLLISIONLESS DYNAMICS

Because there are so many dark matter particles, it's best to describe the system in terms of
the single particle distribution function

Poisson-Vlasov System

Collisionless
Boltzmann equation

Phase-space is conserved along each characteristic (i.e. particle orbit).

The number of stars in galaxies is so large that the two-body relexation time by far exceeds the Hubble
time. Stars in galaxies are therefore also described by the above system.

This system of partial differential equations is very difficult (impossible) to solve directly in non-trivial cases.

There are so many dark matter particles that they do not scatter locally on
each other, they just respond to their collective gravitational field

The N-body method uses a finite set of particles to sample the
underlying distribution function

"MONTE-CARLO" APPROACH TO COLLISIONLESS DYNAMICS

We discretize in terms of N particles, which approximately move along characteristics
of the underlying system.

The need for gravitational softening:

Prevent large-angle particle scatterings and the
formation of bound particle pairs.

Ensure that the two-body relexation time is
sufficiently large.

Allows the system to be integrated with low-order
intergations schemes.

Needed for faithful
collisionless behaviour}

3N coupled, non-linear differential
equations of second order

N is very large
All equations are coupled
to each other

Gravity
general relativity, but
Newtonian approximation in
expanding space usually
sufficient

dark matter is collisionless

Hydrodynamics
shock waves
radiation processes
star formation
supernovae,
black holes, etc...

Problems:

Monte-Carlo integration as
an N-body system

The dynamics of structure formation is driven by gravity

Two conflicting requirements complicate the study of hierarchical
structure formation

DYNAMIC RANGE PROBLEM FACED BY COSMOLOGICAL SIMULATIONS

Want small particle mass
to resolve internal structure
of halos

Problems due to a small box size:
Fundamental mode goes non-linear soon after
the first halos form. Simulation cannot be
meaningfully continued beyond this point.

No rare objects (the first halo, rich galaxy
clusters, etc.)

Want large volume to
obtain respresentative
sample of universe

Problems due to a large particle mass:
Physics cannot be resolved.

Small galaxies are missed.

At any given time, halos exist on a large range of mass-scales !

need large N
where N is the particle number

Several questions come up when we try to use the
N-body approach for cosmological simulations

How do we compute the gravitational forces
efficiently and accurately?

How do we integrate the orbital equations in time?

How do we generate appropriate initial conditions?

Note: The naïve
computation of the
forces is an N2 - task.

The particle mesh (PM)
force calculation

Poisson's equation can be solved in real-space by a
convolution of the density field with a Green's function.

The particle-mesh method

In Fourier-space, the convolution becomes a simple multiplication!

Example for
vacuum boundaries:

Solve the potential in these steps:

(1) FFT forward of the density field
(2) Multiplication with the Green's function
(3) FFT backwards to obtain potential

The four steps of the PM algorithm
(a) Density assignment
(b) Computation of the potential
(c) Determination of the force field
(d) Assignment of forces to particles

Density assignment
set of discrete
mesh centres

h

Give particles a “shape” S(x). Then to each mesh cell, we assign the fraction of mass that falls
into this cell. The overlap for a cell is given by:

The assignment function is hence the convolution:

where

The density on the mesh is then a sum over the contributions of each particle as given by the
assignment function:

Density assignment

Name Shape function S(x) # of cells
involved

Properties of force

NGP
Nearest grid point

CIC
Clouds in cells

TSC
Triangular shaped
clouds

piecewise constant
in cells

piecewise linear,
continuous

continuous first
derivative

Note: For interpolation of the grid to obtain the forces, the same assignment function needs to be
used to ensure momentum conservation. (In the CIC case, this is identical to tri-linear interpolation.)

Commenly used particle shape functions and
assignment schemes

Finite differencing of the potential to get the force field

Approximate the force field with
finite differencing

2nd order accurate scheme:

4th order accurate scheme:

Interpolating the mesh-forces to the particle locations

The interpolation kernel needs to be the same one used for mass-assignment to
ensure force anti-symmetry.

Finite differencing of the potential to get the force field

Advantages and disadvantages of the PM-scheme

Pros: SPEED and simplicity

Cons: ● Spatial force resolution
limited to mesh size.

● Force errors somewhat
anisotropic on the scale
of the cell size

serious problem:

cosmological simulations cluster
strongly and have a very large
dynamic range

cannot make the PM-mesh fine
enough and resolve internal
structure of halos as well as large
cosmological scales

we need a method to increase the dynamic range available
in the force calculation

Particle-Particle PM schemes (P3M)

Idea: Supplement the PM force with a direct summation short-range force at the
scale of the mesh cells. The particles in cells are linked together by a chaining list.

Offers much higher dynamic range, but becomes slow when clustering sets in.

In AP3M, mesh-refinements are placed on clustered regions

Can avoid clustering slow-down,
but has higher complexity and
ambiguities in mesh placement

Codes that use AP3M: HYDRA (Couchman)

Iterative Poisson solvers determine the potential
directly on a (hierarchical grid)

Idea: Start with a trial potential and then iteratively relax the solution by updating
with a finite difference approximation to the Laplacian.

This updating eliminates errors on the scale of a few grid cells rapidly, but
longer-range fluctuations die out much more slowly.

In multigrid methods, a hierarchy of meshes is used to speed up convergence,
resulting in a fast method that allows for locally varying resolution.

Codes that use a real-space Poisson solver:

MLAPM (Knebe)

ART (Kravtsov)

TREE algorithms

Idea: Group distant particles
together, and use their multipole
expansion.

Only ~ log(N) force terms per particle.

Gravity is the driving force for structure formation in the universe

HIERARCHICAL TREE ALGORITHMS

The N2 - scaling of direct summation
puts serious limitations on N...

But we want N ~ 106-1010 for
collisionless dynamics of dark matter !

Tree algorithms
Oct-tree in two dimensions

level 0

level 1

level 2

level 3

Idea: Use hierarchical multipole expansion to
account for distant particle groups

r

s

center-of-mass

origin

We expand:

for

and obtain:

the dipole term
vanishes when
summed over all
particles in the
group

The multipole moments are computed for each
node of the tree

Monpole moment:

Quadrupole tensor:

Resulting potential/force approximation:

For a single force evaluation, not N single-particle forces need to be computed,
but only of order log(N) multipoles, depending on opening angle.

● The tree algorithm has no intrinsic restrictions for its dynamic range
● force accuracy can be conveniently adjusted to desired level
● the speed does depend only very weakly on clustering state
● geometrically flexible, allowing arbitrary geometries

TreePM force
calculation algorithm

Particularly at high redshift, it is expensive to obtain accurate forces
with the tree-algorithm
THE TREE-PM FORCE SPLIT

Idea: Split the potential (of a single particle) in Fourier space into a long-range and a short-range
part, and compute them separately with PM and TREE algorithms, respectively.

Periodic peculiar
potential

Poisson equation
in Fourier space:

Solve with PM-method
● CIC mass assignment
● FFT
● multiply with kernel
● FFT backwards
● Compute force with 4-point

finite difference operator
● Interpolate forces to particle

positions

Solve in real space with TREE

FFT to real space

In the TreePM algorithm, the tree has to be walked locally only
PERFORMANCE GAIN DUE TO LOCAL TREE WALK

~ 5 rs

● Accurate and fast long-range force
● No force anisotropy
● Speed is largely insensitive to clustering (as for

tree algorithm)
● No Ewald correction necessary for periodic

boundary conditions

Using zero-padding and a different
Greens-Function, the long-range force
can also be computed for vaccuum
boundaries using the FFT.
(Implemented in Gadget-2)

Advantages of TreePM include:

The maximum size of a TreePM simulation with Lean-GADGET-II
is essentially memory bound
A HIGHLY MEMORY EFFICIENT VERSION OF GADGET-II

Particle Data

44 bytes / particle

Tree storage

40 bytes / particle

FFT workspace
24 bytes / mesh-cell

Special code version
 Lean-GADGET-II needs:

84 bytes / particle
(Assuming 1.5 mesh-cells/particle)

Simulation Set-up:

Particle number: 21603 = 10.077.696.000 = ~ 1010 particles

Boxsize: L = 500 h -1 Mpc

Particle mass: mp = 8.6 x 108 h -1 M⊙

Spatial resolution: 5 h -1 kpc

Size of FFT: 25603 = 16.777.216.000 = ~ 17 billion cells

Compared to Hubble-Volume simulation: > 2000 times better mass resolution
10 times larger particle number
13 better spatial resolution

~840 GByte

Minimum memory requirement
of simulation code

Not needed concurently!

Cosmological N-body simulations have grown rapidly in size over the
last three decades

"N" AS A FUNCTION OF TIME

Computers double
their speed every
18 months
(Moore's law)

N-body
simulations have
doubled their size
every 16-17
months

Recently, growth
has accelerated
further.
The Millennium Run
should have become
possible in 2010 –
we have done it in
2004 !

The simulation was run on the Regatta supercomputer of the RZG
REQUIRED RESSOURCES

16 x 32-way Regatta Node
64 GByte RAM
512 CPU total

1 TByte RAM needed

CPU time consumed
 350.000 processor hours

● 28 days on 512 CPUs/16
nodes

● 38 years in serial
● ~ 6% of annual time on total

Regatta system
● sustained average code

performance (hardware
counters) 400 Mflops/cpu

● 5 x 1017 floating point ops
● 11000 (adaptive) timesteps

Organization of tree and
domain decomposition

The tree-algorithm of Gadget-2 has been optimized for providing
better memory locality
REDUCTION OF CACHE MISSES AND DOMAIN DECOMPOSITION

Idea: Order the particles along a space-filling curve

Hilbert's curve: A fractal that fills the square

The space-filling Hilbert curve can be readily generalized to 3D
THE PEANO-HILBERT CURVE

A space-filling Peano-Hilbert curve is used in GADGET-2 for a novel
domain-decomposition concept

HIERARCHICAL TREE ALGORITHMS

Overview of code options

GADGET2 is controlled both by compile-time options, and a parameterfile

OVERVIEW OF USAGE OF THE CODE

Requirements
for compilation

C-compiler
make-utility (GNU-make)
MPI-1.1 library
GSL (GNU scientific library)
FFTW ('Fastest Fourier Transform in the West')
HDF5 library (optional)

Simulation settings
and code parameters

Makefile
Parameterfile

Start of a simulation Start from initial conditions:
mpirun np 32 ./Gadget2 param.txt

Continuation of run from a set of restart files
mpirun np 32 ./Gadget2 param.txt 1

Start from a Gadget snapshot file
mpirun np 32 ./Gadget2 param.txt 2

P-GADGET2 is controlled both by compile-time options, and a parameterfile

OVERVIEW OF CODE OPTIONS

There are 192 Makefile options by now...

###
Look at end of file for a brief guide to the compile-time options.
###

#--------------------------------------- Basic operation mode of code
OPT += -DPERIODIC
OPT += -DCOOLING
OPT += -DSFR
#OPT += -DUNEQUALSOFTENINGS

#--------------------------------------- TreePM Options
OPT += -DPMGRID=384
#OPT += -DASMTH=1.25
#OPT += -DRCUT=4.5
#OPT += -DPLACEHIGHRESREGION=3
#OPT += -DENLARGEREGION=1.2
#OPT += -DONLY_PM
#OPT += -DHPM
#OPT += -DHPM_SMTH=1.5

#--------------------------------------- Single/Double Precision
#OPT += -DDOUBLEPRECISION
#OPT += -DDOUBLEPRECISION_FFTW
#OPT += -DFLTROUNDOFFREDUCTION # enables round off reduction in particle sums

 # if DOUBLEPRECISION is set, these sums are done in 'long double'
 # if single precision is used, they are done in 'double'
 # This should in principle allow to make computations
 # *exactly* invariant to different numbers of CPUs.

#OPT += -DSOFTDOUBLEDOUBLE # when this is set, a software implementation of
 # 128bit double-double addition is used, implemented as a c++ class.
 # Hence, this option requires compilation with a c++ compiler

#--------------------------------------- SFR/feedback model

#OPT += -DSOFTEREQS
OPT += -DMOREPARAMS
#OPT += -DMETALS
OPT += -DSTELLARAGE
#OPT += -DWINDS
#OPT += -DQUICK_LYALPHA
#OPT += -DISOTROPICWINDS
#OPT += -DMHM

GADGET2 supports
different types of
simulation set-ups

OVERVIEW OF TYPES OF
SIMULATIONS POSSIBLE
WITH GADGET

GADGET2 is controlled with a free-format ASCII parameterfile

EXAMPLE OF A PARAMETERFILE

GADGET2 is controlled with a free-format ASCII parameterfile

DETAILED LIST OF PARAMETERS - I

GADGET2 is controlled with a free-format ASCII parameterfile

DETAILED LIST OF PARAMETERS - II

GADGET2 is controlled with a free-format ASCII parameterfile

DETAILED LIST OF PARAMETERS - III

GADGET2 is controlled with a free-format ASCII parameterfile

DETAILED LIST OF PARAMETERS - IV

GADGET2 is controlled with a free-format ASCII parameterfile

DETAILED LIST OF PARAMETERS - V

GADGET2 is controlled with a free-format ASCII parameterfile

DETAILED LIST OF PARAMETERS - VI

GADGET2 is controlled with a free-format ASCII parameterfile

DETAILED LIST OF PARAMETERS - VII

GADGET2 is controlled with a free-format ASCII parameterfile

DETAILED LIST OF PARAMETERS - VIII

GADGET2's snapshot file format is a simple binary file with a block
structure

BLOCKS IN GADGET2 SNAPSHOTS

only used for
I/O-format 2

only used for
I/O-format 3

Scalability and its
limitations

For fixed timesteps and large cosmological boxes, the scalability of
the code is very good
RESULTS FOR A "STRONG SCALING" TEST (FIXED PROBLEM SIZE)

2563 particles in a 50 h-1 Mpc box

For small problem sizes or
isolated galaxies, the
scalability is limited
RESULTS FOR "STRONG SCALING"
OF A GALAXY COLLISION
SIMULATION

CPU consumption in different code parts
as a function of processor number

Ncpu

In a parallel code, numerous sources of performance losses can limit
scalability to large processor numbers
TROUBLING ASPECTS OF PARALLELIZATION

Incomplete parallelization
The residual serial part in an application limits the theoretical speed-up one can
achieve with an arbritrarily large number of CPUs ('Ahmdahl's Law'), e.g. 5%
serial code left, then parallel speed-up is at most a factor 20.

Parallelization overhead
The bookkeeping code necessary for non-trivial communication algorithms
increases the total cost compared to a serial algorithm. Sometimes this extra cost
increases with the number of processors used.

Communication times
The time spent in waiting for messages to be transmitted across the network
(bandwith) and the time required for starting a communication request (latency).

Wait times
Work-load imbalances will force the fastest CPU to idly wait for the slowest one.

Strong scaling: Keep problem size fixed, but increase number of CPUs
Weak scaling: When number of CPUs is increased, also increase the problem size

 As a rule, scalability can be more easily retained in the weak scaling regime.

In practice, it usually doesn't make sense to use a large number of
processors for a (too) small problem size !

The time-steps of particles are spatially correlated

29 3 8 3 15 3 8 3 22 3 8 3 15 3 8 3 29 3 8 3 15 3 8 3 22 3 8

SystemstepOrdinary power-2
stepping in GADGET

Systemstep

29 3 8 3 15 3 8 3 22 3 8 3 15 3 8 3 29 3 8 3 15 3 8 3 22 3 8

Ordinary power-2
stepping in GADGET

Systemstep

29 3 8 3 15 3 8 3 22 3 8 3 15 3 8 3 29 3 8 3 15 3 8 3 22 3 8

Ordinary power-2
stepping in GADGET

Systemstep

29 3 8 3 15 3 8 3 22 3 8 3 15 3 8 3 29 3 8 3 15 3 8 3 22 3 8

Ordinary power-2
stepping in GADGET

9 10 8 10 8 10 7 9 8 9 7 10 8 9 8 8 9 10 8 10 8 10 7 9 8 9 7

Systemstep"FLEXSTEPS" power-2
stepping in GADGET

The cumulative execution time of the tree-walk on each processor is
measured and used to adjust the domain decomposition
THE "CPUSPEEDADJUSTMENT" OPTION

Tree walk for local particles Tree walk for imported particles

elapsed time do to the assigned work in each step

Together with shuffled timestep hierarchy, the total CPU-time

for the tree-walks per step can be made roughly equal

cpu 0

cpu 1

cpu 2

cpu 3

cpu 4

cpu 5

cpu 6

cpu 7

wait times
(losses)

T̀work = ∑Ttreewalk

The communication between the two phases of a step introduces a
synchronization point in GADGET2's standard communication scheme
LOSSES DUE TO IMBALANCE IN DIFFERENT COMMUNICATION PHASES

cpu 0

cpu 1

cpu 2

cpu 3

cpu 4

cpu 5

cpu 6

cpu 7

wait times
(losses)

The situation after work-load balancing:

This is what actually happens once the communication step is accounted for:

communication phase

The communication itself consumes some time and also induces
additional wait times
LOSSES DUE TO COMMUNICATION TIMES IN ONE GRAVITY STEP

wait times
(losses)

communication
times

communication
times

one timestep

This is the real situation in GADGET-2....

An improvement of scalability appears to require asynchronous
communication
POSSIBLE OPTIONS FOR ASYNCHRONOUS COMMUNICATION

One-sided communication?

Available with MPI-2.... but:

● rather restrictive API

● complicated communication semantics

● active and passive target one-sided
communications are supported, but both
require explicit synchronisation calls

● progress of passive target mode may rely on
MPI-calls of target (e.g. MPICH2)

Use MPI's asynchronous two-sided
communication?

Available with MPI-1

● use buffered sends (MPI_Bsend)

● use asynchronous receives with explicit
checks for completion (MPI_Irecv)

● use MPI_Probe to test for incoming messages

Asynchronous communication and a pipelining approach can
eliminate the mid-step imbalance losses in the gravity step
FLOW-CHART FOR ONE TIMESTEP IN NEW GADGET COMMUNICATION SCHEME

do local
particles

send out work packages
(asynchronously, returns
immediatelly)

launch an asynchronous
receive for each incoming
message

process messages once they
have arrived. Is it a work
package, or the result for one
sent out myself?

do imported particles send result (asynchron)

add results to particles

more receives pending?

all particles done?

New communication scheme:

This scheme reduces imbalance losses.

It can also overlap communication and computation. ● IBM Power4

● IBM Bluegene?
● Infiniband Cluster (MVAPICH)
● SMP boxes
● Myrinet/Quadrics

Overlap can be realized on:

yes

no yes

no

timestep
done

On many systems, asynchronous communication still requires a
concurrent MPI call of the other process to ensure progress
TIME-LINE OF EVENTS IN AN ASYNCHRONOUS SEND

message put
into send buffer

receive request
posted, data
picked up

Time

CPU A

CPU B

Ideal asynchronous case

message put
into send buffer

receive request
posted

Time

CPU A

CPU B

Synchronous case

Computations

What really happens on many systems
message put
into send buffer

receive request
posted

Time

CPU A

CPU B

Wait

The inhomogeneous
particle distribution
and the different
timesteps as a
function of density
make it challenging
to find an optimum
domain
decomposition that
balances work-load
(and ideally memory-
load)

PARTICLE
DISTRIBUTION IN AN
EXPONENTIAL DISK

GADGET-1
used a simple
orthogonal
recursive
bisection
EXAMPLE OF
DOMAIN
DECOMPOSITION IN
GADGET-1

GADGET-2
uses a more
flexible space-
filling Peano-
Hilbert curve
EXAMPLE OF
DOMAIN
DECOMPOSITION IN
GADGET-2

GADGET-3
uses a space-
filling Peano-
Hilbert curve
which is more
flexible
EXAMPLE OF
DOMAIN
DECOMPOSITION IN
GADGET-3

The new domain decomposition scheme can balance the work-load and
the memory-load at the same time but requires more communication
THE SIMPLE IDEA BEHIND MULTI-DOMAINS

The domain decomposition partitions the space-filling curve through the volume

cpu 1 cpu 2cpu 0 cpu 3
GADGET-2

GADGET-3

But: Need a more efficicient domain
decomposition code

Need a tree-walk scheme that doesn't slow
down if there are more domains

Need a new communication strategy for the
PM part of the code

The new code scales substantially better for high-res zoom simulations of
isolated halos
A STRONG SCALING TEST ON BLUEGENE OF A SMALL HIGH-RES HALO

“Gadget 3”

Gadget 2

Changing from the tree domain decomposition to the slab
decomposition needed for the FFTs is a non-trivial problem
ACCOMDATING THE SLAB DECOMPOSITION

Memory-load can become hugely imbalanced
(especially for zoom simulations)

Work-load in binning and interpolating off the grid
very imbalanced

Ghost layers may require substantial memory if
number of CPUs not very different from 1-d grid
resolution

Simply swapping the particle
set into a slab decomposition is
in general not a good idea

In GADGET2, a local mesh-patch is constructed that encloses the
local domain
PM COMMUNICATION ALGORITHM IN GADGET-2

Communication only occurs with
subset of slabs that intersect
local patch

Memory requirement of PM
algorithm independent of the
number of CPUs used for a given
PM mesh size (think slabs are no
problem)

For multiple local domains, the enclosing rectangular patch quickly
approaches the volume of the entire grid
LOCAL RECTANGULAR MESH-PATCH FOR MULTIPLE DOMAINS

This becomes quickly prohibitive
in terms of memory consumption,
as each processor effectively
holds a pach of size of the whole
PM grid

In the new approach, we tightly fit arbitrarily shaped mesh-patches to
the local domains
LOCAL MESH-PATCHES FOR MULTIPLE DOMAINS

Binning and interpolation part of
the algorithm well balanced

No superfluous storage needed,
and storage requirements to
good approximation independent
of tree domain decomposition

Since no ghost layers for finite
differencing of the potential field
are used, one additional global
transposition of the potential is
carried out

The arbitrarily shaped mesh
patches are organized as a table
with a value and an index into the
full field. Only cells that are
“touched” at least once are stored.

In the new code, exported particles know where to continue the tree
walk on the foreign processor

COMMUNICATION IN THE DISTRIBUTED TREE ALGORITHM need to export
to processor 3

Gadget2 starts to walk
the tree for imported
particles always at the
root node

Gadget3 continues the
tree walk at the right
place for imported
particles

Evaluating opening criteria for top-
level tree nodes multiple times can
be eliminated. The work for tree
walks (gravity and SPH neighbor
search) becomes strictly
independent of the number of
processors.

Code development in GADGET continues...

PRIMARY NEW FEATURES OF GADGET-3

New domain decomposition for multiple domains, leading to
better scalability of the code. Domain decomposition code
itself is much faster for large processor numbers.

Speed improvement of tree-walks by eliminating
parallelization overhead. (required extensive rewrites of
SPH and tree communication)

Much more accurate and detailed internal accounting of
CPU time consumption, including informative, human-
readable output for every timestep.

New PM code which is work-load balanced even for zoom
simulations.

The new version of the code can be quite a bit better than the old version...

Improved memory handling of code, reducing peak usage.

Speed improvements in neighbor search, tree construction
and updates, and in generation of Peano-Hilbert keys

