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Examples for 
GADGET simulations



The multiphase-model allows stable disk galaxies even for very high gas surface densities

STABILITY OF DISKS AS A FUNCTION OF GAS FRACTION AND EQUATION OF STATE



In major-mergers 
between two disk 
galaxies, tidal 
torques extract 
angular momen-
tum from cold 
gas, providing 
fuel for nuclear 
starbursts
 

TIME EVOLUTION OF A 
PROGRADE MAJOR 
MERGER



 



Simulating very high-mass resolution down to low redshift requires a 
multi-resolution technique
 

ZOOMING IN ON HALOS OF INTEREST - RESIMULATION TECHNIQUE

Springel et al. (2001)

Parent simulation:
large-scale structure

Rerun with locally higher resolution:

achieve ~ 102 -103  increase in mass resolution

Internal structure of indivudal objects can be 
studied with very high resolution

Resimulation with spatially 
varying resolution



Springel, White, 
Kauffmann, 
Tormen (2000)

Lagrangian 
simulations 
allow very 
high spatial 
dynamic 
range in 3D
  

ZOOM INTO A 
CLUSTER 

~ 20 million 
particles within 
virial radius of 
cluster
~105 spatial 
dynamic range



Adiabatic gasdynamics can be readily incorporated in zoom simulations
 

A SIMULATED CLUSTER WITH GAS

file:///home/volker/Talks/Schuelergruppe_2005/play_cluster.sh


Weak magnetic fields are ubiquitious in the universe
 

DEFLECTION MAP OF UHECR IN THE LOCAL UNIVERSE

Dolag, Grasso, Springel & Tkachev (2003):

Contrained Simulation of the Local Universe 
ideal MHD, run with P-Gadget2



Simulations on scales of order 100 Mpc are the workhorses of 
studies of large-scale structure formation
 

EVOLUTION OF STRUCTURE IN THE GAS DISTRIBUTION

Springel, Hernquist & White (2000)



file:///home/volker/Talks/VolkssternwarteBerlin_2006/play_fly.sh


Cosmological 
hydrodynamical 
simulations can 
directly follow 
galaxy formation
 

BARYONIC DENSITY 
IN SIMULATIONS 
WITH  RADIATIVE 
COOLING, STAR 
FORMATION AND 
FEEDBACK



Galactic winds reduce the star formation efficiency of low-mass galaxies
 

HOT BUBBLES IN THE IGM AROUND SMALL PRIMEVAL GALAXIES

Springel & Hernquist (2003)



Features and history of 
GADGET



GADGET is a versatile TreeSPH N-body code for 
cosmological applications
 

PRINCIPLE CHARACTERISTICS OF GADGET

Gravity solver based on a TREE or TreePM algorithm

Hydrodynamics is followed by means of SPH

Timesteps can be individual and adaptive

Code is parallelized with MPI for distributed memory 
architectures 

Code is written in C and is highly portable

A basic version of the code is publicly available



What is smoothed particle hydrodynamics?
 

DIFFERENT METHODS TO DISCRETIZE A FLUID

Eulerian Lagrangian

discretize space discretize mass

representation on a mesh 
(volume elements)

representation by fluid elements 
(particles)

resolutions adjusts 
automatically to the flow

high accuracy (shock capturing), low 
numerical viscosity

collapse

principle advantage: principle advantage:



GADGET has evolved over the years and is in a process of
continuous change
 

MAJOR EVENTS IN GADGET'S DEVELOPMENT

1997 first version, serial GRAPE code

1998 first tree code, first
  parallel MPI code, serial SPH

1999 large production runs on 512 processors 
Cray T3E, SPH in parallel code

2000 Gadget-1.0 released to the public

2001 Gadget-1.1 released

2002 complete rewrite, first
      versions of Gadget-2

2003 TreePM finalized, code for 
     Millennium Run written

2004 lots of physics
      added to code

2005 public version
     Gadget2 released

2006 lots of physics
added to code, Gadget3?



S-Gadget 1.0 P-Gadget 1.0

S-Gadget 1.1 P-Gadget 1.1

P-Gadget 2

P-Gadget 2

L-Gadget 2

P-Gadget 2

Gadget 2

Millennium run

major
rewrite

public version

51000 lines

18000 lines

10000 lines

public versions

12000 lines8000 lines

Gadget 2-asynchronous

Gadget 2-multidomain
BG / P-Gadget 3 P-Gadget 3

65000 lines 42000 lines

19000 lines

20000 lines

There is now a 
collection of 
different versions 
of GADGET
 

THE FAMILY TREE OF 
GADGET



We recently developed a largely new cosmological code: GADGET-II
 

NEW FEATURES OF GADGET-II

SPH neighbour search faster

New symplectic integration method

Code may be run optionally as a TreePM hybrid code

Higher speed of the tree algorithm 

Conservative SPH formulation

Additional types of runs possible (e.g. 2D, hydrodynamics-only, long periodic boxes)

More physics

The new code is quite a bit better than the old version...

Less memory consumption for tree and particle storage (~100% saving)

Efficient and clean formation of star particles

Still fully standard C & standard MPI. The FFTW and GSL libraries are needed.

More output options, including HDF5

Fully consistent dynamic tree updates

Reduced communication overhead, better scalability, arbitrary number of cpus

Key feature for 
Millenium Run

Built in parallel group finder



Physics in GADGET-II for simulations of galaxy formation
 

Thermal conduction

Radiative cooling, UV background (homogeneous)

Detailed chemical enrichment

Subresolution multiphase model for the ISM: Star formation and feedback

Magneto-hydrodynamics

Growth of supermassive black holes and AGN feedback

Hopefully additional in the future...

Phenomenological model for galactic winds

Non-thermal relativistic component (cosmic rays)

Bubble heating and feedback by AGN

Shock detection

Physical viscosity via Navier-Stokes equation



Why is GADGET written in C ?
 

SOME PROS AND CONS FOR DIFFERENT LANGUAGES

C
highly portable (ANSI standardized)
free, efficient, and reliable compilers on all 
platforms
compact syntax, free format source code
powerful pointer arithmetic
dynamic memory allocation
powerful low-level bit operations
call by reference or call by value
easy to learn
direct access to all UNIX functionality
subset of C++
used a lot outside of physics (good for a 
career outside research if needed)

no run-time library for automatic I/O error 
checking
no array bound checks
easy to write code that will seg-fault
language is not really designed for 
numerical work

Fortran
easy to learn
run-time library helps in tracking down I/O errors
language is efficient for numerical work, Fortran90 
matrix arithmetic is convenient and fast
large body of legacy code available in physics
limited feature set and possibility to do array bound 
checks help to avoid simple coding mistakes
allows implicit types and quick & dirty coding

compilers are often proprietary and buggy (small user 
base)
easy to write code that is not well portable
wordy syntax, anachronistic restrictions on source code 
format
static memory model (Fortran90 allows also dynamic 
allocation)
dying language, not used a lot any more outside of 
physics
error-prone treatment of global variables (common 
blocks)
cumbersome interfaces to UNIX-libraries

C++

strong typing enforced
object oriented, includes features such as operator 
overloading, inheritence, virtual functions and 
classes, etc.
allows code encapsulation, supports writing reusable, 
modular and extensible code
powerful standard template library 

difficult to learn (numerous abstract 
concepts and subtle syntax)
often lower performance in numerical 
applications than C or Fortran



What do we simulate?



85%

15%

Dark Matter

Baryons

Ω= 0.73

Ω= 0.27

Λ

Cosmological 
Constant
“Dark Energy”

0
Matter

Ωtot = 1
flat space-time

Simulations need to account for the full 
cosmic matter-energy content
 

MATERIAL IN THE UNIVERSE



We assume that the only appreciable interaction of dark matter 
particles is gravity
 

COLLISIONLESS DYNAMICS

Because there are so many dark matter particles, it's best to describe the system in terms of 
the single particle distribution function

Poisson-Vlasov System

Collisionless 
Boltzmann equation

Phase-space is conserved along each characteristic (i.e. particle orbit).

The number of stars in galaxies is so large that the two-body relexation time by far exceeds the Hubble 
time. Stars in galaxies are therefore also described by the above system.

This system of partial differential equations is very difficult (impossible) to solve directly in non-trivial cases.  

There are so many dark matter particles that they do not scatter locally on 
each other, they just respond to their collective gravitational field



The N-body method uses a finite set of particles to sample the 
underlying distribution function
 

"MONTE-CARLO" APPROACH TO COLLISIONLESS DYNAMICS

We discretize in terms of N particles, which approximately move along characteristics 
of the underlying system.

The need for gravitational softening:

Prevent large-angle particle scatterings and the 
formation of bound particle pairs.

Ensure that the two-body relexation time is 
sufficiently large.

Allows the system to be integrated with low-order 
intergations schemes.

Needed for faithful 
collisionless behaviour}



3N coupled, non-linear differential 
equations of second order

N is very large
All equations are coupled 
to each other

Gravity
general relativity, but
Newtonian approximation in 
expanding space usually 
sufficient

dark matter is collisionless

Hydrodynamics
shock waves
radiation processes
star formation
supernovae, 
black holes, etc... 

Problems:

Monte-Carlo integration as 
an N-body system

The dynamics of structure formation is driven by gravity
 



Two conflicting requirements complicate the study of hierarchical 
structure formation
 

DYNAMIC RANGE PROBLEM FACED BY COSMOLOGICAL SIMULATIONS 

Want small particle mass 
to resolve internal structure 
of halos

Problems due to a small box size: 
Fundamental mode goes non-linear soon after 
the first halos form.    Simulation cannot be 
meaningfully continued beyond this point.

No rare objects (the first halo, rich galaxy 
clusters, etc.) 

Want large volume to 
obtain respresentative 
sample of universe

Problems due to a large particle mass: 
Physics cannot be resolved.

Small galaxies are missed.

At any given time, halos exist on a large range of mass-scales !

need large N
where N is the particle number 



Several questions come up when we try to use the 
N-body approach for cosmological simulations

How do we compute the gravitational forces 
efficiently and accurately?

How do we integrate the orbital equations in time?

How do we generate appropriate initial conditions?

Note: The naïve 
computation of the 
forces is an N2 - task.



The particle mesh (PM) 
force calculation



Poisson's equation can be solved in real-space by a 
convolution of the density field with a Green's function.

The particle-mesh method

In Fourier-space, the convolution becomes a simple multiplication!

Example for
vacuum boundaries:

Solve the potential in these steps:

(1)  FFT forward of the density field
(2)  Multiplication with the Green's function
(3)  FFT backwards to obtain potential

The four steps of the PM algorithm
(a)  Density assignment
(b)  Computation of the potential
(c)  Determination of the force field
(d)  Assignment of forces to particles



Density assignment
set of discrete 
mesh centres

h

Give particles a “shape” S(x). Then to each mesh cell, we assign the fraction of mass that falls 
into this cell. The overlap for a cell is given by:

The assignment function is hence the convolution:

where

The density on the mesh is then a sum over the contributions of each particle as given by the 
assignment function:

Density assignment



Name Shape function S(x) # of cells 
involved

Properties of force

NGP
Nearest grid point

CIC
Clouds in cells

TSC
Triangular shaped 
clouds

piecewise constant 
in cells

piecewise linear, 
continuous

continuous first 
derivative

Note: For interpolation of the grid to obtain the forces, the same assignment function needs to be 
used to ensure momentum conservation. (In the CIC case, this is identical to tri-linear interpolation.)

Commenly used particle shape functions and 
assignment schemes



Finite differencing of the potential to get the force field

Approximate the force field                               with 
finite differencing

2nd order accurate scheme:

4th order accurate scheme:

Interpolating the mesh-forces to the particle locations

The interpolation kernel needs to be the same one used for mass-assignment to 
ensure force anti-symmetry.

Finite differencing of the potential to get the force field



Advantages and disadvantages of the PM-scheme

Pros: SPEED and simplicity

Cons: ● Spatial force resolution 
limited to mesh size.

● Force errors somewhat 
anisotropic on the scale 
of the cell size

serious problem:

cosmological simulations cluster 
strongly and have a very large 
dynamic range

cannot make the PM-mesh fine 
enough and resolve internal 
structure of halos as well as large 
cosmological scales

we need a method to increase the dynamic range available 
in the force calculation



Particle-Particle PM schemes (P3M)

Idea: Supplement the PM force with a direct summation short-range force at the 
scale of the mesh cells. The particles in cells are linked together by a chaining list.

Offers much higher dynamic range, but becomes slow when clustering sets in.

In AP3M, mesh-refinements are placed on clustered regions

Can avoid clustering slow-down, 
but has higher complexity and 
ambiguities in mesh placement

Codes that use AP3M: HYDRA         (Couchman)



Iterative Poisson solvers determine the potential 
directly on a (hierarchical grid)

Idea: Start with a trial potential and then iteratively relax the solution by updating 
with a finite difference approximation to the Laplacian.

This updating eliminates errors on the scale of a few grid cells rapidly, but 
longer-range fluctuations die out much more slowly.

In multigrid methods, a hierarchy of meshes is used to speed up convergence, 
resulting in a fast method that allows for locally varying resolution.

Codes that use a real-space Poisson solver:

MLAPM   (Knebe )

ART         (Kravtsov)



TREE algorithms



Idea: Group distant particles 
together, and use their multipole 
expansion.

Only ~ log(N) force terms per particle.

Gravity is the driving force for structure formation in the universe
 

HIERARCHICAL TREE ALGORITHMS

The N2 - scaling of direct summation 
puts serious limitations on N...

But we want N ~ 106-1010  for 
collisionless dynamics of dark matter !



Tree algorithms
Oct-tree in two dimensions

level 0

level 1

level 2

level 3

Idea: Use hierarchical multipole expansion to 
account for distant particle groups

r

s

center-of-mass

origin

We expand:

for

and obtain:

the dipole term 
vanishes when 
summed over all 
particles in the 
group





The multipole moments are computed for each 
node of the tree

Monpole moment:

Quadrupole tensor:

Resulting potential/force approximation:

For a single force evaluation, not N single-particle forces need to be computed, 
but only of order log(N) multipoles, depending on opening angle.

● The tree algorithm has no intrinsic restrictions for its dynamic range
● force accuracy can be conveniently adjusted to desired level
● the speed does depend only very weakly on clustering state
● geometrically flexible, allowing arbitrary geometries



TreePM force
calculation algorithm



Particularly at high redshift, it is expensive to obtain accurate forces  
with the tree-algorithm
THE TREE-PM FORCE SPLIT

Idea: Split the potential (of a single particle) in Fourier space into a long-range and a short-range 
part, and compute them separately with PM and TREE algorithms, respectively.

Periodic peculiar 
potential

Poisson equation
in Fourier space:

Solve with PM-method
● CIC mass assignment
● FFT
● multiply with kernel
● FFT backwards
● Compute force with 4-point 

finite difference operator
● Interpolate forces to particle 

positions

Solve in real space with TREE

FFT to real space



In the TreePM algorithm, the tree has to be walked locally only
PERFORMANCE GAIN DUE TO LOCAL TREE WALK

~ 5 rs

● Accurate and fast long-range force
● No force anisotropy
● Speed is largely insensitive to clustering (as for 

tree algorithm)
● No Ewald correction necessary for periodic 

boundary conditions

Using zero-padding and a different 
Greens-Function, the long-range force 
can also be computed for vaccuum 
boundaries using the FFT. 
(Implemented in Gadget-2)

Advantages of TreePM include:



The maximum size of a TreePM simulation with Lean-GADGET-II 
is essentially memory bound
A HIGHLY MEMORY EFFICIENT VERSION OF GADGET-II

Particle Data

44 bytes / particle

Tree storage

40 bytes / particle

FFT workspace 
24 bytes / mesh-cell

Special code version
 Lean-GADGET-II needs:

84 bytes / particle
(Assuming 1.5 mesh-cells/particle)

Simulation Set-up:

Particle number: 21603 = 10.077.696.000 = ~ 1010 particles

Boxsize: L = 500 h -1 Mpc

Particle mass:  mp = 8.6 x 108 h -1 M⊙

Spatial resolution:  5 h -1 kpc

Size of FFT:  25603  = 16.777.216.000 = ~ 17 billion cells

Compared to Hubble-Volume simulation: > 2000 times better mass resolution
10 times larger particle number
13 better spatial resolution

~840 GByte

Minimum memory requirement 
of simulation code

Not needed concurently!



Cosmological N-body simulations have grown rapidly in size over the 
last three decades
 

"N" AS A FUNCTION OF TIME

Computers double 
their speed every 
18 months 
(Moore's law)

N-body 
simulations have 
doubled their size 
every 16-17 
months

Recently, growth 
has accelerated 
further. 
The Millennium Run 
should have become 
possible in 2010 – 
we have done it in 
2004 !



The simulation was run on the Regatta supercomputer of the RZG
REQUIRED RESSOURCES

16 x 32-way Regatta Node
64 GByte RAM
512 CPU total

1 TByte RAM needed

CPU time consumed
 350.000 processor hours

● 28 days on 512 CPUs/16 
nodes

● 38 years in serial
● ~ 6% of annual time on total 

Regatta system
● sustained average code 

performance (hardware 
counters) 400 Mflops/cpu

● 5 x 1017 floating point ops
● 11000 (adaptive) timesteps



Organization of tree and 
domain decomposition



The tree-algorithm of Gadget-2 has been optimized for providing 
better memory locality
REDUCTION OF CACHE MISSES AND DOMAIN DECOMPOSITION

Idea: Order the particles along a space-filling curve

Hilbert's curve: A fractal that fills the square



The space-filling Hilbert curve can be readily generalized to 3D
THE PEANO-HILBERT CURVE



A space-filling Peano-Hilbert curve is used in GADGET-2 for a novel 
domain-decomposition concept
 

HIERARCHICAL TREE ALGORITHMS



Overview of code options



GADGET2 is controlled both by compile-time options, and a parameterfile
 

OVERVIEW OF USAGE OF THE CODE

Requirements
for compilation

C-compiler
make-utility (GNU-make)
MPI-1.1 library
GSL (GNU scientific library)
FFTW ('Fastest Fourier Transform in the West')
HDF5 library (optional)

Simulation settings
and code parameters

Makefile
Parameterfile

Start of a simulation Start from initial conditions:
mpirun np 32 ./Gadget2 param.txt

Continuation of run from a set of restart files
mpirun np 32 ./Gadget2 param.txt 1

Start from a Gadget snapshot file
mpirun np 32 ./Gadget2 param.txt 2



P-GADGET2 is controlled both by compile-time options, and a parameterfile
 

OVERVIEW OF CODE OPTIONS

There are 192 Makefile options by now...

#######################################################################
#  Look at end of file for a brief guide to the compile-time options. #
#######################################################################

#--------------------------------------- Basic operation mode of code
OPT   +=  -DPERIODIC 
OPT   +=  -DCOOLING    
OPT   +=  -DSFR         
#OPT   +=  -DUNEQUALSOFTENINGS

#--------------------------------------- TreePM Options
OPT   +=  -DPMGRID=384
#OPT   +=  -DASMTH=1.25
#OPT   +=  -DRCUT=4.5
#OPT   +=  -DPLACEHIGHRESREGION=3
#OPT   +=  -DENLARGEREGION=1.2
#OPT   +=  -DONLY_PM
#OPT   +=  -DHPM
#OPT   +=  -DHPM_SMTH=1.5

#--------------------------------------- Single/Double Precision
#OPT   +=  -DDOUBLEPRECISION      
#OPT   +=  -DDOUBLEPRECISION_FFTW      
#OPT   +=  -DFLTROUNDOFFREDUCTION    # enables round off reduction in particle sums

             # if DOUBLEPRECISION is set, these sums are done in 'long double'
                                    # if single precision is used, they are done in 'double'
                                    # This should in principle allow to make computations 
                                    # *exactly* invariant to different numbers of CPUs.

#OPT   +=  -DSOFTDOUBLEDOUBLE       # when this is set, a software implementation of 
                                    # 128bit double-double addition is used, implemented as a c++ class.
                                    # Hence, this option requires compilation with a c++ compiler

#--------------------------------------- SFR/feedback model

#OPT   +=  -DSOFTEREQS
OPT   +=  -DMOREPARAMS    
#OPT   +=  -DMETALS       
OPT   +=  -DSTELLARAGE   
#OPT   +=  -DWINDS
#OPT   +=  -DQUICK_LYALPHA
#OPT   +=  -DISOTROPICWINDS
#OPT   +=  -DMHM



GADGET2 supports 
different types of 
simulation set-ups
 

OVERVIEW OF TYPES OF 
SIMULATIONS POSSIBLE 
WITH GADGET



GADGET2 is controlled with a free-format ASCII parameterfile
 

EXAMPLE OF A PARAMETERFILE



GADGET2 is controlled with a free-format ASCII parameterfile
 

DETAILED LIST OF PARAMETERS - I



GADGET2 is controlled with a free-format ASCII parameterfile
 

DETAILED LIST OF PARAMETERS - II



GADGET2 is controlled with a free-format ASCII parameterfile
 

DETAILED LIST OF PARAMETERS - III



GADGET2 is controlled with a free-format ASCII parameterfile
 

DETAILED LIST OF PARAMETERS - IV



GADGET2 is controlled with a free-format ASCII parameterfile
 

DETAILED LIST OF PARAMETERS - V



GADGET2 is controlled with a free-format ASCII parameterfile
 

DETAILED LIST OF PARAMETERS - VI



GADGET2 is controlled with a free-format ASCII parameterfile
 

DETAILED LIST OF PARAMETERS - VII



GADGET2 is controlled with a free-format ASCII parameterfile
 

DETAILED LIST OF PARAMETERS - VIII



GADGET2's snapshot file format is a simple binary file with a block 
structure
 

BLOCKS IN GADGET2 SNAPSHOTS

only used for 
I/O-format 2

only used for 
I/O-format 3



Scalability and its 
limitations



For fixed timesteps and large cosmological boxes, the scalability of 
the code is very good
RESULTS FOR A "STRONG SCALING"  TEST (FIXED PROBLEM SIZE)

2563 particles in a 50 h-1 Mpc box



For small problem sizes or 
isolated galaxies, the 
scalability is limited
RESULTS FOR "STRONG SCALING" 
OF A GALAXY COLLISION 
SIMULATION

CPU consumption in different code parts 
as a function of processor number

Ncpu



In a parallel code, numerous sources of performance losses can limit 
scalability to large processor numbers
TROUBLING ASPECTS OF PARALLELIZATION

Incomplete parallelization
The residual serial part in an application limits the theoretical speed-up one can 
achieve with an arbritrarily large number of CPUs ('Ahmdahl's Law'), e.g. 5% 
serial code left, then parallel speed-up is at most a factor 20.

Parallelization overhead
The bookkeeping code necessary for non-trivial communication algorithms 
increases the total cost compared to a serial algorithm. Sometimes this extra cost 
increases with the number of processors used. 

Communication times
The time spent in waiting for messages to be transmitted across the network 
(bandwith) and the time required for starting a communication request (latency).

Wait times
Work-load imbalances will force the fastest CPU to idly wait for the slowest one. 

Strong scaling:  Keep problem size fixed, but increase number of CPUs
Weak scaling:    When number of CPUs is increased, also increase the problem size

           As a rule, scalability can be more easily retained in the weak scaling regime.

In practice, it usually doesn't make sense to use a large number of 
processors for a (too) small problem size !



The time-steps of particles are spatially correlated
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Systemstep"FLEXSTEPS" power-2
stepping in GADGET



The cumulative execution time of the tree-walk on each processor is 
measured and used to adjust the domain decomposition
THE "CPUSPEEDADJUSTMENT" OPTION

Tree walk for local particles Tree walk for imported particles

elapsed time do to the assigned work in each step



Together with shuffled timestep hierarchy, the total CPU-time 

for the tree-walks per step can be made roughly equal 

cpu 0

cpu 1

cpu 2

cpu 3

cpu 4

cpu 5

cpu 6

cpu 7

wait times 
(losses)

T̀work = ∑Ttreewalk



The communication between the two phases of a step introduces a 
synchronization point in GADGET2's standard communication scheme
LOSSES DUE TO IMBALANCE IN DIFFERENT COMMUNICATION PHASES

cpu 0

cpu 1

cpu 2

cpu 3

cpu 4

cpu 5

cpu 6

cpu 7

wait times 
(losses)

The situation after work-load balancing:

This is what actually happens once the communication step is accounted for:

communication phase



The communication itself consumes some time and also induces 
additional  wait times
LOSSES DUE TO COMMUNICATION TIMES IN ONE GRAVITY STEP

wait times 
(losses)

communication 
times

communication 
times

one timestep

This is the real situation in GADGET-2....



An improvement of scalability appears to require asynchronous 
communication
POSSIBLE OPTIONS FOR ASYNCHRONOUS COMMUNICATION

One-sided communication?

Available with MPI-2.... but:

● rather restrictive API

● complicated communication semantics

● active and passive target one-sided 
communications are supported, but both 
require explicit synchronisation calls

● progress of passive target mode may rely on 
MPI-calls of target (e.g. MPICH2)

Use MPI's asynchronous two-sided 
communication?

Available with MPI-1

● use buffered sends (MPI_Bsend)

● use asynchronous receives with explicit 
checks for completion (MPI_Irecv)

● use MPI_Probe to test for incoming messages



Asynchronous communication and a pipelining approach can 
eliminate the mid-step imbalance losses in the gravity step
FLOW-CHART FOR ONE TIMESTEP IN NEW GADGET COMMUNICATION SCHEME

do local 
particles

send out work packages 
(asynchronously, returns 
immediatelly)

launch an asynchronous 
receive for each incoming 
message

process messages once they 
have arrived. Is it a work 
package, or the result for one 
sent out myself?

do imported particles send result (asynchron)

add results to particles

more receives pending?

all particles done?

New communication scheme:

This scheme reduces imbalance losses.
 
It can also overlap communication and computation. ● IBM Power4

● IBM Bluegene?
● Infiniband Cluster (MVAPICH)
● SMP boxes
● Myrinet/Quadrics

Overlap can be realized on:

yes

no yes

no

timestep 
done



On many systems, asynchronous communication still requires a 
concurrent MPI call of the other process to ensure progress
TIME-LINE OF EVENTS IN AN ASYNCHRONOUS SEND

message put 
into send buffer

receive request 
posted, data 
picked up

Time

CPU A

CPU B

Ideal asynchronous case

message put 
into send buffer

receive request 
posted

Time

CPU A

CPU B

Synchronous case

Computations

What really happens on many systems
message put 
into send buffer

receive request 
posted

Time

CPU A

CPU B

Wait



The inhomogeneous 
particle distribution 
and the different 
timesteps as a 
function of density 
make it challenging 
to find an optimum 
domain 
decomposition that 
balances work-load 
(and ideally memory-
load)

PARTICLE 
DISTRIBUTION IN AN 
EXPONENTIAL DISK



GADGET-1 
used a simple 
orthogonal 
recursive 
bisection
EXAMPLE OF 
DOMAIN 
DECOMPOSITION IN 
GADGET-1



GADGET-2 
uses a more 
flexible space-
filling Peano-
Hilbert curve 
EXAMPLE OF 
DOMAIN 
DECOMPOSITION IN 
GADGET-2



GADGET-3 
uses a space-
filling Peano-
Hilbert curve 
which is more 
flexible
EXAMPLE OF 
DOMAIN 
DECOMPOSITION IN 
GADGET-3



The new domain decomposition scheme can balance the work-load and 
the memory-load at the same time but requires more communication
THE SIMPLE IDEA BEHIND MULTI-DOMAINS

The domain decomposition partitions the space-filling curve through the volume

cpu 1 cpu 2cpu 0 cpu 3
GADGET-2

GADGET-3

But: Need a more efficicient domain 
decomposition code

Need a tree-walk scheme that doesn't slow 
down if there are more domains

Need a new communication strategy for the 
PM part of the code



The new code scales substantially better for high-res zoom simulations of 
isolated halos
A STRONG SCALING TEST ON BLUEGENE OF A SMALL HIGH-RES HALO

“Gadget 3”

Gadget 2



Changing from the tree domain decomposition to the slab 
decomposition needed for the FFTs is a non-trivial problem
ACCOMDATING THE SLAB DECOMPOSITION

Memory-load can become hugely imbalanced 
(especially for zoom simulations)

Work-load in binning and interpolating off the grid 
very imbalanced

Ghost layers may require substantial memory if 
number of CPUs not very different from 1-d grid 
resolution

Simply swapping the particle 
set into a slab decomposition is 
in general not a good idea



In GADGET2, a local mesh-patch is constructed that encloses the 
local domain
PM COMMUNICATION ALGORITHM IN GADGET-2

Communication only occurs with 
subset of slabs that intersect 
local patch

Memory requirement of PM 
algorithm independent of the 
number of CPUs used for a given 
PM mesh size (think slabs are no 
problem)



For multiple local domains, the enclosing rectangular patch quickly 
approaches the volume of the entire grid
LOCAL RECTANGULAR MESH-PATCH FOR MULTIPLE DOMAINS

This becomes quickly prohibitive 
in terms of memory consumption, 
as each processor effectively 
holds a pach of size of the whole 
PM grid



In the new approach, we tightly fit arbitrarily shaped mesh-patches to 
the local domains
LOCAL MESH-PATCHES FOR MULTIPLE DOMAINS

Binning and interpolation part of 
the algorithm well balanced

No superfluous storage needed, 
and storage requirements to 
good approximation independent 
of tree domain decomposition

Since no ghost layers for finite 
differencing of the potential field 
are used, one additional global 
transposition of the potential is 
carried out

The arbitrarily shaped mesh 
patches are organized as a table 
with a value and an index into the 
full field. Only cells that are 
“touched” at least once are stored.



In the new code, exported particles know where to continue the tree 
walk on the foreign processor
 

COMMUNICATION IN THE DISTRIBUTED TREE ALGORITHM need to export
to processor 3

Gadget2 starts to walk 
the tree for imported 
particles always at the 
root node

Gadget3 continues the 
tree walk at the right 
place for imported 
particles

Evaluating opening criteria for top-
level tree nodes multiple times can 
be eliminated. The work for tree 
walks (gravity and SPH neighbor 
search) becomes strictly 
independent of the number of 
processors.



Code development in GADGET continues...
 

PRIMARY NEW FEATURES OF GADGET-3

New domain decomposition for multiple domains, leading to 
better scalability of the code. Domain decomposition code 
itself is much faster for large processor numbers.

Speed improvement of tree-walks by eliminating 
parallelization overhead. (required extensive rewrites of 
SPH and tree communication) 

Much more accurate and detailed internal accounting of 
CPU time consumption, including informative, human-
readable output for every timestep.

New PM code which is work-load balanced even for zoom 
simulations.

The new version of the code can be quite a bit better than the old version...

Improved memory handling of code, reducing peak usage.

Speed improvements in neighbor search, tree construction 
and updates, and in generation of Peano-Hilbert keys


